2.3.17 first order ode autonomous

Table 2.429: first order ode autonomous

#

ODE

CAS classification

Solved?

29

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

30

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

35

\[ {}y^{\prime } = \ln \left (1+y^{2}\right ) \]
i.c.

[_quadrature]

63

\[ {}1+y^{\prime } = 2 y \]
i.c.

[_quadrature]

69

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

70

\[ {}{y^{\prime }}^{2} = 4 y \]
i.c.

[_quadrature]

71

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

72

\[ {}y^{\prime } = y \sqrt {y^{2}-1} \]
i.c.

[_quadrature]

73

\[ {}y^{\prime }+y = 2 \]
i.c.

[_quadrature]

125

\[ {}y^{\prime } = y+y^{3} \]

[_quadrature]

171

\[ {}x^{\prime } = x-x^{2} \]
i.c.

[_quadrature]

172

\[ {}x^{\prime } = 10 x-x^{2} \]
i.c.

[_quadrature]

173

\[ {}x^{\prime } = 1-x^{2} \]
i.c.

[_quadrature]

174

\[ {}x^{\prime } = 9-4 x^{2} \]
i.c.

[_quadrature]

175

\[ {}x^{\prime } = 3 x \left (5-x\right ) \]
i.c.

[_quadrature]

176

\[ {}x^{\prime } = 3 x \left (5-x\right ) \]
i.c.

[_quadrature]

177

\[ {}x^{\prime } = 4 x \left (7-x\right ) \]
i.c.

[_quadrature]

178

\[ {}x^{\prime } = 7 x \left (x-13\right ) \]
i.c.

[_quadrature]

231

\[ {}y^{\prime }+y^{2} = 0 \]

[_quadrature]

671

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

672

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

675

\[ {}y^{\prime } = \ln \left (1+y^{2}\right ) \]
i.c.

[_quadrature]

698

\[ {}1+y^{\prime } = 2 y \]
i.c.

[_quadrature]

704

\[ {}y^{\prime }+y = 2 \]
i.c.

[_quadrature]

749

\[ {}y^{\prime } = y+y^{3} \]

[_quadrature]

1065

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

1157

\[ {}y^{\prime } = \frac {b +a y}{d +c y} \]

[_quadrature]

1176

\[ {}y^{3}+y^{\prime } = 0 \]

[_quadrature]

1182

\[ {}y^{\prime } = a y+b y^{2} \]

[_quadrature]

1183

\[ {}y^{\prime } = y \left (-2+y\right ) \left (-1+y\right ) \]

[_quadrature]

1184

\[ {}y^{\prime } = -1+{\mathrm e}^{y} \]

[_quadrature]

1185

\[ {}y^{\prime } = -1+{\mathrm e}^{-y} \]

[_quadrature]

1186

\[ {}y^{\prime } = -\frac {2 \arctan \left (y\right )}{1+y^{2}} \]

[_quadrature]

1187

\[ {}y^{\prime } = -k \left (-1+y\right )^{2} \]

[_quadrature]

1188

\[ {}y^{\prime } = y^{2} \left (y^{2}-1\right ) \]

[_quadrature]

1189

\[ {}y^{\prime } = y \left (1-y^{2}\right ) \]

[_quadrature]

1190

\[ {}y^{\prime } = -b \sqrt {y}+a y \]

[_quadrature]

1191

\[ {}y^{\prime } = y^{2} \left (4-y^{2}\right ) \]

[_quadrature]

1192

\[ {}y^{\prime } = \left (1-y\right )^{2} y^{2} \]

[_quadrature]

1519

\[ {}y^{\prime } = 2 y \]

[_quadrature]

1534

\[ {}y^{\prime } = a y^{\frac {a -1}{a}} \]

[_quadrature]

1535

\[ {}y^{\prime } = {| y|}+1 \]
i.c.

[_quadrature]

1537

\[ {}y^{\prime }+a y = 0 \]

[_quadrature]

1548

\[ {}y^{\prime }+3 y = 1 \]

[_quadrature]

1574

\[ {}\sec \left (y\right )^{2} y^{\prime }-3 \tan \left (y\right ) = -1 \]

[_quadrature]

1596

\[ {}y^{\prime } = 2 y-y^{2} \]
i.c.

[_quadrature]

1603

\[ {}y^{\prime } = a y-b y^{2} \]
i.c.

[_quadrature]

1621

\[ {}y^{\prime } = y^{{2}/{5}} \]
i.c.

[_quadrature]

1638

\[ {}y^{\prime }-2 y = 2 \sqrt {y} \]
i.c.

[_quadrature]

1682

\[ {}14 y^{3} x^{2}+21 x^{2} y^{2} y^{\prime } = 0 \]

[_quadrature]

1715

\[ {}2 y^{3}+3 y^{2} y^{\prime } = 0 \]

[_quadrature]

1792

\[ {}y^{\prime }+y^{2}+k^{2} = 0 \]

[_quadrature]

1793

\[ {}y^{\prime }+y^{2}-3 y+2 = 0 \]

[_quadrature]

1794

\[ {}y^{\prime }+y^{2}+5 y-6 = 0 \]

[_quadrature]

1795

\[ {}y^{\prime }+y^{2}+8 y+7 = 0 \]

[_quadrature]

1796

\[ {}y^{\prime }+y^{2}+14 y+50 = 0 \]

[_quadrature]

1797

\[ {}6 y^{\prime }+6 y^{2}-y-1 = 0 \]

[_quadrature]

1798

\[ {}36 y^{\prime }+36 y^{2}-12 y+1 = 0 \]

[_quadrature]

2328

\[ {}y^{\prime } = k \left (a -y\right ) \left (b -y\right ) \]
i.c.

[_quadrature]

2499

\[ {}y^{\prime } = k \left (a -y\right ) \left (b -y\right ) \]
i.c.

[_quadrature]

2809

\[ {}x^{\prime } = x \left (-x+1\right ) \]

[_quadrature]

2810

\[ {}x^{\prime } = -x \left (-x+1\right ) \]

[_quadrature]

2811

\[ {}x^{\prime } = x^{2} \]

[_quadrature]

2865

\[ {}y^{\prime } = {\mathrm e}^{y} \]
i.c.

[_quadrature]

2866

\[ {}{\mathrm e}^{y} \left (1+y^{\prime }\right ) = 1 \]
i.c.

[_quadrature]

3058

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

3286

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

3289

\[ {}\left (1-y^{2}\right ) {y^{\prime }}^{2} = 1 \]

[_quadrature]

3294

\[ {}{y^{\prime }}^{2} y+\left (y^{2}-x^{3}-x y^{2}\right ) y^{\prime }-x y \left (x^{2}+y^{2}\right ) = 0 \]

[_quadrature]

3299

\[ {}{y^{\prime }}^{2}+y^{2} = 1 \]

[_quadrature]

3305

\[ {}{y^{\prime }}^{2} y+2 y^{\prime }+1 = 0 \]

[_quadrature]

3414

\[ {}{y^{\prime }}^{2}-y^{2} = 0 \]

[_quadrature]

3425

\[ {}y^{\prime } = 2 y-4 \]
i.c.

[_quadrature]

3426

\[ {}y^{\prime } = -y^{3} \]
i.c.

[_quadrature]

3433

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

3434

\[ {}y^{\prime } = -1+y \]

[_quadrature]

3435

\[ {}y^{\prime } = 1-y \]

[_quadrature]

3436

\[ {}y^{\prime } = y^{3}-y^{2} \]

[_quadrature]

3437

\[ {}y^{\prime } = 1-y^{2} \]

[_quadrature]

3439

\[ {}y^{\prime } = -y \]

[_quadrature]

3447

\[ {}y^{\prime } = y \]
i.c.

[_quadrature]

3448

\[ {}y^{\prime } = 2 y \]
i.c.

[_quadrature]

3561

\[ {}y^{\prime } = -y^{2} \]

[_quadrature]

3608

\[ {}y^{\prime } = \frac {2 \sqrt {-1+y}}{3} \]
i.c.

[_quadrature]

3609

\[ {}m v^{\prime } = m g -k v^{2} \]
i.c.

[_quadrature]

4087

\[ {}y = y^{\prime }+\frac {{y^{\prime }}^{2}}{2} \]

[_quadrature]

4099

\[ {}y^{\prime }+y = 0 \]

[_quadrature]

4218

\[ {}y^{\prime } = 3 \cos \left (y\right )^{2} \]

[_quadrature]

4306

\[ {}y^{2} y^{\prime } = 2+3 y^{6} \]
i.c.

[_quadrature]

4662

\[ {}y^{\prime } = a +b y^{2} \]

[_quadrature]

4667

\[ {}y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2} \]

[_quadrature]

4688

\[ {}y^{\prime } = y \left (a +b y^{2}\right ) \]

[_quadrature]

4689

\[ {}y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2}+\operatorname {a3} y^{3} \]

[_quadrature]

4700

\[ {}y^{\prime } = \sqrt {{| y|}} \]

[_quadrature]

4701

\[ {}y^{\prime } = a +b y+\sqrt {\operatorname {A0} +\operatorname {B0} y} \]

[_quadrature]

4705

\[ {}y^{\prime } = \sqrt {a +b y^{2}} \]

[_quadrature]

4706

\[ {}y^{\prime } = y \sqrt {a +b y} \]

[_quadrature]

4713

\[ {}y^{\prime } = a +b \cos \left (y\right ) \]

[_quadrature]

4725

\[ {}y^{\prime } = a +b \sin \left (y\right ) \]

[_quadrature]

4729

\[ {}y^{\prime } = \sqrt {a +b \cos \left (y\right )} \]

[_quadrature]

4735

\[ {}y^{\prime } = a f \left (y\right ) \]

[_quadrature]

5024

\[ {}y y^{\prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2} \]

[_quadrature]

5027

\[ {}y y^{\prime } = \sqrt {y^{2}+a^{2}} \]

[_quadrature]

5028

\[ {}y y^{\prime } = \sqrt {y^{2}-a^{2}} \]

[_quadrature]

5117

\[ {}x \left (y+2\right ) y^{\prime }+a x = 0 \]

[_quadrature]

5334

\[ {}{y^{\prime }}^{2} = y \]

[_quadrature]

5340

\[ {}{y^{\prime }}^{2} = 1+y^{2} \]

[_quadrature]

5341

\[ {}{y^{\prime }}^{2} = 1-y^{2} \]

[_quadrature]

5342

\[ {}{y^{\prime }}^{2} = a^{2}-y^{2} \]

[_quadrature]

5343

\[ {}{y^{\prime }}^{2} = a^{2} y^{2} \]

[_quadrature]

5344

\[ {}{y^{\prime }}^{2} = a +b y^{2} \]

[_quadrature]

5346

\[ {}{y^{\prime }}^{2} = \left (-1+y\right ) y^{2} \]

[_quadrature]

5347

\[ {}{y^{\prime }}^{2} = \left (y-a \right ) \left (y-b \right ) \left (y-c \right ) \]

[_quadrature]

5348

\[ {}{y^{\prime }}^{2} = a^{2} y^{n} \]

[_quadrature]

5349

\[ {}{y^{\prime }}^{2} = a^{2} \left (1-\ln \left (y\right )^{2}\right ) y^{2} \]

[_quadrature]

5358

\[ {}{y^{\prime }}^{2}-2 y^{\prime }-y^{2} = 0 \]

[_quadrature]

5363

\[ {}{y^{\prime }}^{2}+a y^{\prime }+b y = 0 \]

[_quadrature]

5393

\[ {}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+x y = 0 \]

[_quadrature]

5395

\[ {}{y^{\prime }}^{2}+\left (1+2 y\right ) y^{\prime }+y \left (-1+y\right ) = 0 \]

[_quadrature]

5396

\[ {}{y^{\prime }}^{2}-2 \left (x -y\right ) y^{\prime }-4 x y = 0 \]

[_quadrature]

5397

\[ {}{y^{\prime }}^{2}-\left (1+4 y\right ) y^{\prime }+\left (1+4 y\right ) y = 0 \]

[_quadrature]

5398

\[ {}{y^{\prime }}^{2}-2 \left (1-3 y\right ) y^{\prime }-\left (4-9 y\right ) y = 0 \]

[_quadrature]

5399

\[ {}{y^{\prime }}^{2}+\left (a +6 y\right ) y^{\prime }+y \left (3 a +b +9 y\right ) = 0 \]

[_quadrature]

5402

\[ {}{y^{\prime }}^{2}+\left (a x +b y\right ) y^{\prime }+a b x y = 0 \]

[_quadrature]

5405

\[ {}{y^{\prime }}^{2}-\left (4+y^{2}\right ) y^{\prime }+4+y^{2} = 0 \]

[_quadrature]

5406

\[ {}{y^{\prime }}^{2}-\left (x -y\right ) y y^{\prime }-x y^{3} = 0 \]

[_separable]

5417

\[ {}2 {y^{\prime }}^{2}+2 \left (6 y-1\right ) y^{\prime }+3 y \left (6 y-1\right ) = 0 \]

[_quadrature]

5454

\[ {}x {y^{\prime }}^{2}-\left (1+x y\right ) y^{\prime }+y = 0 \]

[_quadrature]

5455

\[ {}x {y^{\prime }}^{2}+\left (1-x \right ) y y^{\prime }-y^{2} = 0 \]

[_quadrature]

5493

\[ {}x^{2} {y^{\prime }}^{2}+\left (a +b \,x^{2} y^{3}\right ) y^{\prime }+a b y^{3} = 0 \]

[_quadrature]

5529

\[ {}{y^{\prime }}^{2} y-\left (1+x y\right ) y^{\prime }+x = 0 \]

[_quadrature]

5530

\[ {}{y^{\prime }}^{2} y+\left (x -y^{2}\right ) y^{\prime }-x y = 0 \]

[_quadrature]

5536

\[ {}\left (1-a y\right ) {y^{\prime }}^{2} = a y \]

[_quadrature]

5538

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

5547

\[ {}y^{2} {y^{\prime }}^{2} = a^{2} \]

[_quadrature]

5552

\[ {}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0 \]

[_quadrature]

5558

\[ {}\left (1-y^{2}\right ) {y^{\prime }}^{2} = 1 \]

[_quadrature]

5559

\[ {}\left (a^{2}-y^{2}\right ) {y^{\prime }}^{2} = y^{2} \]

[_quadrature]

5572

\[ {}\left (2-3 y\right )^{2} {y^{\prime }}^{2} = 4-4 y \]

[_quadrature]

5588

\[ {}{y^{\prime }}^{3} = \left (y-a \right )^{2} \left (y-b \right )^{2} \]

[_quadrature]

5592

\[ {}{y^{\prime }}^{3}+y^{\prime }-y = 0 \]

[_quadrature]

5593

\[ {}{y^{\prime }}^{3}+y^{\prime } = {\mathrm e}^{y} \]

[_quadrature]

5601

\[ {}{y^{\prime }}^{3}-2 y y^{\prime }+y^{2} = 0 \]

[_quadrature]

5606

\[ {}{y^{\prime }}^{3}+{y^{\prime }}^{2}-y = 0 \]

[_quadrature]

5607

\[ {}{y^{\prime }}^{3}-{y^{\prime }}^{2}+y^{2} = 0 \]

[_quadrature]

5610

\[ {}{y^{\prime }}^{3}+\operatorname {a0} {y^{\prime }}^{2}+\operatorname {a1} y^{\prime }+\operatorname {a2} +\operatorname {a3} y = 0 \]

[_quadrature]

5612

\[ {}{y^{\prime }}^{3}-{y^{\prime }}^{2} y+y^{2} = 0 \]

[_quadrature]

5613

\[ {}{y^{\prime }}^{3}+\left (\cos \left (x \right ) \cot \left (x \right )-y\right ) {y^{\prime }}^{2}-\left (1+y \cos \left (x \right ) \cot \left (x \right )\right ) y^{\prime }+y = 0 \]

[_quadrature]

5614

\[ {}{y^{\prime }}^{3}+\left (2 x -y^{2}\right ) {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0 \]

[_quadrature]

5615

\[ {}{y^{\prime }}^{3}-\left (2 x +y^{2}\right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0 \]

[_quadrature]

5616

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y+y^{2}\right ) {y^{\prime }}^{2}+x y \left (x^{2}+x y+y^{2}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

5617

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y^{2}+y^{4}\right ) {y^{\prime }}^{2}+x y^{2} \left (x^{2}+x y^{2}+y^{4}\right ) y^{\prime }-x^{3} y^{6} = 0 \]

[_quadrature]

5619

\[ {}2 {y^{\prime }}^{3}+{y^{\prime }}^{2}-y = 0 \]

[_quadrature]

5645

\[ {}{y^{\prime }}^{4} = \left (y-a \right )^{3} \left (y-b \right )^{2} \]

[_quadrature]

5651

\[ {}{y^{\prime }}^{4}+4 y {y^{\prime }}^{3}+6 y^{2} {y^{\prime }}^{2}-\left (1-4 y^{3}\right ) y^{\prime }-\left (3-y^{3}\right ) y = 0 \]

[_quadrature]

5652

\[ {}2 {y^{\prime }}^{4}-y y^{\prime }-2 = 0 \]

[_quadrature]

5654

\[ {}3 {y^{\prime }}^{5}-y y^{\prime }+1 = 0 \]

[_quadrature]

5655

\[ {}{y^{\prime }}^{6} = \left (y-a \right )^{4} \left (y-b \right )^{3} \]

[_quadrature]

5664

\[ {}\sqrt {{y^{\prime }}^{2}+1}+a y^{\prime } = y \]

[_quadrature]

5674

\[ {}y^{\prime } \sin \left (y^{\prime }\right )+\cos \left (y^{\prime }\right ) = y \]

[_quadrature]

5678

\[ {}{\mathrm e}^{y^{\prime }-y}-{y^{\prime }}^{2}+1 = 0 \]

[_quadrature]

5754

\[ {}y = a y^{\prime }+b {y^{\prime }}^{2} \]

[_quadrature]

5756

\[ {}y = \sqrt {{y^{\prime }}^{2}+1}+a y^{\prime } \]

[_quadrature]

5840

\[ {}y^{\prime }+a y = b \]

[_quadrature]

6036

\[ {}y^{\prime }+b^{2} y^{2} = a^{2} \]

[_quadrature]

6092

\[ {}y^{\prime } = y \]

[_quadrature]

6101

\[ {}\left (1+y\right ) y^{\prime } = y \]
i.c.

[_quadrature]

6103

\[ {}2 y^{\prime } = 3 \left (y-2\right )^{{1}/{3}} \]
i.c.

[_quadrature]

6257

\[ {}y^{\prime } = 4 y^{2}-3 y+1 \]

[_quadrature]

6269

\[ {}x^{\prime }-x^{3} = x \]

[_quadrature]

6286

\[ {}y^{\prime } = y^{{1}/{3}} \]

[_quadrature]

6287

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

6293

\[ {}y^{\prime } = y^{2}-3 y+2 \]
i.c.

[_quadrature]

6321

\[ {}u^{\prime } = \alpha \left (1-u\right )-\beta u \]

[_quadrature]

6679

\[ {}y = 2 y^{\prime }+\sqrt {{y^{\prime }}^{2}+1} \]

[_quadrature]

6685

\[ {}\left (3 y-1\right )^{2} {y^{\prime }}^{2} = 4 y \]

[_quadrature]

6886

\[ {}2 y^{\prime }+y = 0 \]

[_quadrature]

6887

\[ {}y^{\prime }+20 y = 24 \]

[_quadrature]

6891

\[ {}y^{\prime } = 25+y^{2} \]

[_quadrature]

6894

\[ {}x^{\prime } = \left (x-1\right ) \left (1-2 x\right ) \]

[_quadrature]

6896

\[ {}p^{\prime } = p \left (1-p\right ) \]

[_quadrature]

6906

\[ {}y^{\prime }+2 y = 0 \]

[_quadrature]

6907

\[ {}5 y^{\prime } = 2 y \]

[_quadrature]

6915

\[ {}y^{\prime } = y^{2}+2 y-3 \]

[_quadrature]

6916

\[ {}\left (-1+y\right ) y^{\prime } = 1 \]

[_quadrature]

6918

\[ {}{y^{\prime }}^{2} = 4 y \]

[_quadrature]

6919

\[ {}{y^{\prime }}^{2} = 9-y^{2} \]

[_quadrature]

6920

\[ {}y y^{\prime }+\sqrt {16-y^{2}} = 0 \]

[_quadrature]

6924

\[ {}y^{\prime } = \sqrt {1-y^{2}} \]

[_quadrature]

6929

\[ {}y^{\prime } = 5-y \]

[_quadrature]

6930

\[ {}y^{\prime } = 4+y^{2} \]

[_quadrature]

6933

\[ {}y^{\prime } = y-y^{2} \]
i.c.

[_quadrature]

6934

\[ {}y^{\prime } = y-y^{2} \]
i.c.

[_quadrature]

6947

\[ {}y^{\prime } = 3 y^{{2}/{3}} \]
i.c.

[_quadrature]

6949

\[ {}y^{\prime } = y^{{2}/{3}} \]

[_quadrature]

6958

\[ {}y^{\prime } = \sqrt {y^{2}-9} \]
i.c.

[_quadrature]

6959

\[ {}y^{\prime } = \sqrt {y^{2}-9} \]
i.c.

[_quadrature]

6962

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

6963

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

6964

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

6965

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

6966

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

6967

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

6984

\[ {}y^{\prime } = 2 y-4 \]

[_quadrature]

6989

\[ {}y^{\prime } = y \left (y-3\right ) \]

[_quadrature]

7036

\[ {}y^{\prime } = \frac {1}{y} \]
i.c.

[_quadrature]

7037

\[ {}y^{\prime } = \frac {1}{y} \]
i.c.

[_quadrature]

7050

\[ {}y^{\prime } = y-y^{3} \]

[_quadrature]

7051

\[ {}y^{\prime } = y^{2}-y^{4} \]

[_quadrature]

7052

\[ {}y^{\prime } = y^{2}-3 y \]

[_quadrature]

7053

\[ {}y^{\prime } = y^{2}-y^{3} \]

[_quadrature]

7054

\[ {}y^{\prime } = \left (y-2\right )^{4} \]

[_quadrature]

7055

\[ {}y^{\prime } = 10+3 y-y^{2} \]

[_quadrature]

7056

\[ {}y^{\prime } = y^{2} \left (4-y^{2}\right ) \]

[_quadrature]

7057

\[ {}y^{\prime } = y \left (2-y\right ) \left (4-y\right ) \]

[_quadrature]

7058

\[ {}y^{\prime } = y \ln \left (y+2\right ) \]

[_quadrature]

7059

\[ {}y^{\prime } = \left (y \,{\mathrm e}^{y}-9 y\right ) {\mathrm e}^{-y} \]

[_quadrature]

7060

\[ {}y^{\prime } = \frac {2 y}{\pi }-\sin \left (y\right ) \]

[_quadrature]

7061

\[ {}y^{\prime } = y^{2}-y-6 \]

[_quadrature]

7062

\[ {}m v^{\prime } = m g -k v^{2} \]

[_quadrature]

7066

\[ {}y^{\prime }-\left (-1+y\right )^{2} = 0 \]

[_quadrature]

7077

\[ {}s^{\prime } = k s \]

[_quadrature]

7078

\[ {}q^{\prime } = k \left (q-70\right ) \]

[_quadrature]

7079

\[ {}p^{\prime } = p-p^{2} \]

[_quadrature]

7085

\[ {}x^{\prime } = 4 x^{2}+4 \]
i.c.

[_quadrature]

7088

\[ {}y^{\prime }+2 y = 1 \]
i.c.

[_quadrature]

7091

\[ {}y^{\prime } = -y \ln \left (y\right ) \]
i.c.

[_quadrature]

7101

\[ {}y^{\prime } = y^{2}-4 \]
i.c.

[_quadrature]

7102

\[ {}y^{\prime } = y^{2}-4 \]
i.c.

[_quadrature]

7103

\[ {}y^{\prime } = y^{2}-4 \]
i.c.

[_quadrature]

7109

\[ {}y^{\prime } = \left (-1+y\right )^{2} \]
i.c.

[_quadrature]

7110

\[ {}y^{\prime } = \left (-1+y\right )^{2} \]
i.c.

[_quadrature]

7111

\[ {}y^{\prime } = \left (-1+y\right )^{2}+\frac {1}{100} \]
i.c.

[_quadrature]

7112

\[ {}y^{\prime } = \left (-1+y\right )^{2}-\frac {1}{100} \]
i.c.

[_quadrature]

7113

\[ {}y^{\prime } = y-y^{3} \]
i.c.

[_quadrature]

7114

\[ {}y^{\prime } = y-y^{3} \]
i.c.

[_quadrature]

7115

\[ {}y^{\prime } = y-y^{3} \]
i.c.

[_quadrature]

7116

\[ {}y^{\prime } = y-y^{3} \]
i.c.

[_quadrature]

7117

\[ {}y^{\prime } = \frac {1}{y-3} \]
i.c.

[_quadrature]

7118

\[ {}y^{\prime } = \frac {1}{y-3} \]
i.c.

[_quadrature]

7119

\[ {}y^{\prime } = \frac {1}{y-3} \]
i.c.

[_quadrature]

7120

\[ {}y^{\prime } = \frac {1}{y-3} \]
i.c.

[_quadrature]

7124

\[ {}y^{\prime } = y^{{2}/{3}}-y \]

[_quadrature]

7129

\[ {}y^{\prime } = \sqrt {1+y^{2}}\, \sin \left (y\right )^{2} \]
i.c.

[_quadrature]

7130

\[ {}y^{\prime } = y \]
i.c.

[_quadrature]

7132

\[ {}{y^{\prime }}^{2}+y^{2} = 1 \]

[_quadrature]

7134

\[ {}m^{\prime } = -\frac {k}{m^{2}} \]
i.c.

[_quadrature]

7135

\[ {}u^{\prime } = a \sqrt {1+u^{2}} \]
i.c.

[_quadrature]

7136

\[ {}x^{\prime } = k \left (A -x\right )^{2} \]
i.c.

[_quadrature]

7145

\[ {}y^{\prime } = 5 y \]

[_quadrature]

7146

\[ {}y^{\prime }+2 y = 0 \]

[_quadrature]

7148

\[ {}3 y^{\prime }+12 y = 4 \]

[_quadrature]

7173

\[ {}L i^{\prime }+R i = E \]
i.c.

[_quadrature]

7174

\[ {}T^{\prime } = k \left (T-T_{m} \right ) \]
i.c.

[_quadrature]

7199

\[ {}e^{\prime } = -\frac {e}{r c} \]
i.c.

[_quadrature]

7389

\[ {}y^{\prime } = 3 y^{{2}/{3}} \]
i.c.

[_quadrature]

7393

\[ {}\left (1+z^{\prime }\right ) {\mathrm e}^{-z} = 1 \]

[_quadrature]

7515

\[ {}{y^{\prime }}^{2}-a^{2} y^{2} = 0 \]

[_quadrature]

7544

\[ {}{y^{\prime }}^{2} = a^{2}-y^{2} \]

[_quadrature]

7588

\[ {}y^{\prime }+5 y = 2 \]

[_quadrature]

7590

\[ {}y^{\prime } = k y \]

[_quadrature]

7591

\[ {}y^{\prime }-2 y = 1 \]

[_quadrature]

7597

\[ {}L y^{\prime }+R y = E \]

[_quadrature]

7609

\[ {}y^{\prime } = 1+y \]
i.c.

[_quadrature]

7610

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

7611

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

7736

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

7737

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

7738

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

7776

\[ {}y^{\prime } = k y \]

[_quadrature]

7786

\[ {}1+y^{2}+y^{2} y^{\prime } = 0 \]

[_quadrature]

8075

\[ {}y^{\prime }+y = 1 \]

[_quadrature]

8077

\[ {}y^{\prime }-y = 2 \]

[_quadrature]

8079

\[ {}y^{\prime }+y = 0 \]

[_quadrature]

8081

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

8441

\[ {}x {y^{\prime }}^{2}-\left (1+x y\right ) y^{\prime }+y = 0 \]

[_quadrature]

8444

\[ {}{y^{\prime }}^{2} y+\left (x -y^{2}\right ) y^{\prime }-x y = 0 \]

[_quadrature]

8448

\[ {}x y {y^{\prime }}^{2}+\left (-1+x y^{2}\right ) y^{\prime }-y = 0 \]

[_quadrature]

8453

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

[_quadrature]

8539

\[ {}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0 \]

[_quadrature]

8553

\[ {}x {y^{\prime }}^{2}+\left (1-x \right ) y y^{\prime }-y^{2} = 0 \]

[_quadrature]

8717

\[ {}y^{\prime } = 1+y \]

[_quadrature]

8720

\[ {}y^{\prime } = y \]

[_quadrature]

8730

\[ {}y^{\prime } = \sqrt {\frac {1+y}{y^{2}}} \]
i.c.

[_quadrature]

8744

\[ {}y^{\prime } = \frac {1}{1-y} \]
i.c.

[_quadrature]

8745

\[ {}p^{\prime } = a p-b p^{2} \]
i.c.

[_quadrature]

8758

\[ {}f^{\prime } = \frac {1}{f} \]

[_quadrature]

8789

\[ {}x^{\prime } = 4 A k \left (\frac {x}{A}\right )^{{3}/{4}}-3 k x \]

[_quadrature]

8794

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

8796

\[ {}y^{\prime } = \sqrt {1-y^{2}} \]

[_quadrature]

8860

\[ {}w^{\prime } = -\frac {1}{2}-\frac {\sqrt {1-12 w}}{2} \]
i.c.

[_quadrature]

8952

\[ {}y^{\prime } = y \left (1-y^{2}\right ) \]

[_quadrature]

8976

\[ {}h^{2}+\frac {2 a h}{\sqrt {1+{h^{\prime }}^{2}}} = b^{2} \]

[_quadrature]

8993

\[ {}y^{\prime } = y \]

[_quadrature]

8994

\[ {}y^{\prime } = b y \]

[_quadrature]

9001

\[ {}c y^{\prime } = y \]

[_quadrature]

9002

\[ {}c y^{\prime } = b y \]

[_quadrature]

9171

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

10026

\[ {}y^{\prime }+y^{2}-1 = 0 \]

[_quadrature]

10031

\[ {}y^{\prime }-y^{2}-3 y+4 = 0 \]

[_quadrature]

10037

\[ {}y^{\prime }+a y^{2}-b = 0 \]

[_quadrature]

10040

\[ {}y^{\prime }-\left (A y-a \right ) \left (B y-b \right ) = 0 \]

[_quadrature]

10053

\[ {}y^{\prime }-\operatorname {a3} y^{3}-\operatorname {a2} y^{2}-\operatorname {a1} y-\operatorname {a0} = 0 \]

[_quadrature]

10071

\[ {}y^{\prime }-\sqrt {{| y|}} = 0 \]

[_quadrature]

10073

\[ {}y^{\prime }-a \sqrt {1+y^{2}}-b = 0 \]

[_quadrature]

10090

\[ {}y^{\prime }-a \cos \left (y\right )+b = 0 \]

[_quadrature]

10222

\[ {}y y^{\prime }-\sqrt {a y^{2}+b} = 0 \]

[_quadrature]

10373

\[ {}y^{\prime } \cos \left (a y\right )-b \left (1-c \cos \left (a y\right )\right ) \sqrt {\cos \left (a y\right )^{2}-1+c \cos \left (a y\right )} = 0 \]

[_quadrature]

10382

\[ {}{y^{\prime }}^{2}+y^{2}-a^{2} = 0 \]

[_quadrature]

10384

\[ {}{y^{\prime }}^{2}-y^{3}+y^{2} = 0 \]

[_quadrature]

10385

\[ {}{y^{\prime }}^{2}-4 y^{3}+a y+b = 0 \]

[_quadrature]

10386

\[ {}{y^{\prime }}^{2}+a^{2} y^{2} \left (\ln \left (y\right )^{2}-1\right ) = 0 \]

[_quadrature]

10387

\[ {}{y^{\prime }}^{2}-2 y^{\prime }-y^{2} = 0 \]

[_quadrature]

10389

\[ {}{y^{\prime }}^{2}+a y^{\prime }+b y = 0 \]

[_quadrature]

10402

\[ {}{y^{\prime }}^{2}-\left (1+4 y\right ) y^{\prime }+\left (1+4 y\right ) y = 0 \]

[_quadrature]

10404

\[ {}{y^{\prime }}^{2}+\left (b x +a y\right ) y^{\prime }+a b x y = 0 \]

[_quadrature]

10408

\[ {}{y^{\prime }}^{2}+y \left (y-x \right ) y^{\prime }-x y^{3} = 0 \]

[_separable]

10415

\[ {}a {y^{\prime }}^{2}+b y^{\prime }-y = 0 \]

[_quadrature]

10456

\[ {}x^{2} {y^{\prime }}^{2}+\left (a \,x^{2} y^{3}+b \right ) y^{\prime }+a b y^{3} = 0 \]

[_quadrature]

10489

\[ {}\left (b +a y\right ) \left ({y^{\prime }}^{2}+1\right )-c = 0 \]

[_quadrature]

10503

\[ {}\left (y^{2}-a^{2}\right ) {y^{\prime }}^{2}+y^{2} = 0 \]

[_quadrature]

10509

\[ {}\left (3 y-2\right ) {y^{\prime }}^{2}-4+4 y = 0 \]

[_quadrature]

10525

\[ {}{y^{\prime }}^{2} \left (a \cos \left (y\right )+b \right )-c \cos \left (y\right )+d = 0 \]

[_quadrature]

10529

\[ {}{y^{\prime }}^{3}-\left (y-a \right )^{2} \left (y-b \right )^{2} = 0 \]

[_quadrature]

10531

\[ {}{y^{\prime }}^{3}+y^{\prime }-y = 0 \]

[_quadrature]

10535

\[ {}{y^{\prime }}^{3}-2 y y^{\prime }+y^{2} = 0 \]

[_quadrature]

10537

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y+y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

10541

\[ {}{y^{\prime }}^{3}-{y^{\prime }}^{2} y+y^{2} = 0 \]

[_quadrature]

10543

\[ {}a {y^{\prime }}^{3}+b {y^{\prime }}^{2}+c y^{\prime }-y-d = 0 \]

[_quadrature]

10550

\[ {}{y^{\prime }}^{3} \sin \left (x \right )-\left (y \sin \left (x \right )-\cos \left (x \right )^{2}\right ) {y^{\prime }}^{2}-\left (y \cos \left (x \right )^{2}+\sin \left (x \right )\right ) y^{\prime }+y \sin \left (x \right ) = 0 \]

[_quadrature]

10556

\[ {}{y^{\prime }}^{4}-\left (y-a \right )^{3} \left (y-b \right )^{2} = 0 \]

[_quadrature]

10559

\[ {}{y^{\prime }}^{6}-\left (y-a \right )^{4} \left (y-b \right )^{3} = 0 \]

[_quadrature]

10564

\[ {}a {y^{\prime }}^{m}+b {y^{\prime }}^{n}-y = 0 \]

[_quadrature]

10579

\[ {}{y^{\prime }}^{2} \sin \left (y^{\prime }\right )-y = 0 \]

[_quadrature]

12002

\[ {}y^{\prime } = f \left (y\right ) \]

[_quadrature]

12326

\[ {}y y^{\prime }-y = A \]

[_quadrature]

12876

\[ {}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+x y = 0 \]

[_quadrature]

12878

\[ {}{y^{\prime }}^{2}+y^{2} = 1 \]

[_quadrature]

12881

\[ {}{y^{\prime }}^{3}-\left (2 x +y^{2}\right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0 \]

[_quadrature]

13027

\[ {}x^{\prime } = -x^{2} \]

[_quadrature]

13029

\[ {}x^{\prime } = {\mathrm e}^{-x} \]

[_quadrature]

13034

\[ {}x^{\prime } = x \left (1-\frac {x}{4}\right ) \]

[_quadrature]

13044

\[ {}x^{\prime } = \sqrt {x} \]
i.c.

[_quadrature]

13045

\[ {}x^{\prime } = {\mathrm e}^{-2 x} \]
i.c.

[_quadrature]

13046

\[ {}y^{\prime } = 1+y^{2} \]

[_quadrature]

13047

\[ {}u^{\prime } = \frac {1}{5-2 u} \]

[_quadrature]

13048

\[ {}x^{\prime } = a x+b \]

[_quadrature]

13049

\[ {}Q^{\prime } = \frac {Q}{4+Q^{2}} \]

[_quadrature]

13050

\[ {}x^{\prime } = {\mathrm e}^{x^{2}} \]

[_quadrature]

13051

\[ {}y^{\prime } = r \left (a -y\right ) \]

[_quadrature]

13056

\[ {}y^{\prime }+y+\frac {1}{y} = 0 \]

[_quadrature]

13058

\[ {}y^{\prime } = \frac {1}{2 y+1} \]
i.c.

[_quadrature]

13062

\[ {}x^{\prime } = x \left (x+4\right ) \]
i.c.

[_quadrature]

13098

\[ {}x^{\prime } = a x+b \]

[_quadrature]

13104

\[ {}x^{\prime } = a x+b x^{3} \]

[_quadrature]

13260

\[ {}{y^{\prime }}^{2}-4 y = 0 \]

[_quadrature]

13271

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

13714

\[ {}x^{\prime } = -x+1 \]

[_quadrature]

13715

\[ {}x^{\prime } = x \left (2-x\right ) \]

[_quadrature]

13716

\[ {}x^{\prime } = \left (1+x\right ) \left (2-x\right ) \sin \left (x\right ) \]

[_quadrature]

13717

\[ {}x^{\prime } = -x \left (-x+1\right ) \left (2-x\right ) \]

[_quadrature]

13718

\[ {}x^{\prime } = x^{2}-x^{4} \]

[_quadrature]

13722

\[ {}x^{\prime } = -x^{2} \]

[_quadrature]

13724

\[ {}x^{\prime }+p x = q \]

[_quadrature]

13727

\[ {}x^{\prime } = \lambda x \]

[_quadrature]

13728

\[ {}m v^{\prime } = -m g +k v^{2} \]

[_quadrature]

13729

\[ {}x^{\prime } = k x-x^{2} \]
i.c.

[_quadrature]

13730

\[ {}x^{\prime } = -x \left (k^{2}+x^{2}\right ) \]
i.c.

[_quadrature]

13749

\[ {}x^{\prime } = k x-x^{2} \]

[_quadrature]

13859

\[ {}{y^{\prime }}^{2} = 9 y^{4} \]

[_quadrature]

13865

\[ {}y = {y^{\prime }}^{4}-{y^{\prime }}^{3}-2 \]

[_quadrature]

13866

\[ {}{y^{\prime }}^{2}+y^{2} = 4 \]

[_quadrature]

13966

\[ {}y y^{\prime } = 1 \]

[_quadrature]

14219

\[ {}y = y y^{\prime }+y^{\prime }-{y^{\prime }}^{2} \]

[_quadrature]

14315

\[ {}y^{\prime }+\frac {1}{2 y} = 0 \]

[_quadrature]

14317

\[ {}y^{\prime }-2 \sqrt {{| y|}} = 0 \]

[_quadrature]

14319

\[ {}y^{\prime }-y^{2} = 1 \]

[_quadrature]

14322

\[ {}y^{\prime }+3 y = 0 \]

[_quadrature]

14330

\[ {}{y^{\prime }}^{2}-4 y = 0 \]

[_quadrature]

14338

\[ {}y^{\prime } = 3 y^{{2}/{3}} \]

[_quadrature]

14353

\[ {}y^{\prime } = 1-y \]

[_quadrature]

14354

\[ {}y^{\prime } = 1+y \]

[_quadrature]

14355

\[ {}y^{\prime } = y^{2}-4 \]

[_quadrature]

14356

\[ {}y^{\prime } = 4-y^{2} \]

[_quadrature]

14365

\[ {}y^{\prime } = 1+y^{2} \]

[_quadrature]

14366

\[ {}y^{\prime } = y^{2}-3 y \]

[_quadrature]

14368

\[ {}y^{\prime } = {| y|} \]

[_quadrature]

14376

\[ {}y^{\prime } = \ln \left (-1+y\right ) \]

[_quadrature]

14377

\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (-1+y\right )} \]

[_quadrature]

14385

\[ {}y^{\prime } = 4 y-5 \]
i.c.

[_quadrature]

14386

\[ {}y^{\prime }+3 y = 1 \]
i.c.

[_quadrature]

14387

\[ {}y^{\prime } = b +a y \]
i.c.

[_quadrature]

14407

\[ {}y^{\prime } = 3 y \]
i.c.

[_quadrature]

14408

\[ {}y^{\prime } = 1-y \]
i.c.

[_quadrature]

14409

\[ {}y^{\prime } = 1-y \]
i.c.

[_quadrature]

14413

\[ {}y^{\prime } = -2 y+y^{2} \]
i.c.

[_quadrature]

14417

\[ {}2 y y^{\prime } = 1 \]

[_quadrature]

14422

\[ {}y^{\prime } = 1+4 y \]
i.c.

[_quadrature]

14442

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

14443

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

14444

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

14445

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

14446

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

14447

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

14462

\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (-1+y\right )} \]
i.c.

[_quadrature]

14463

\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (-1+y\right )} \]
i.c.

[_quadrature]

14509

\[ {}y^{\prime }-i y = 0 \]
i.c.

[_quadrature]

14604

\[ {}y^{\prime } = 2 y+1 \]

[_quadrature]

14605

\[ {}y^{\prime } = 2-y \]

[_quadrature]

14606

\[ {}y^{\prime } = {\mathrm e}^{-y} \]

[_quadrature]

14607

\[ {}x^{\prime } = 1+x^{2} \]

[_quadrature]

14612

\[ {}y^{\prime } = \frac {1}{2 y+1} \]

[_quadrature]

14614

\[ {}y^{\prime } = y \left (1-y\right ) \]

[_quadrature]

14619

\[ {}y^{\prime } = y^{2}-4 \]

[_quadrature]

14621

\[ {}y^{\prime } = \sec \left (y\right ) \]

[_quadrature]

14624

\[ {}y^{\prime } = -y^{2} \]
i.c.

[_quadrature]

14626

\[ {}y^{\prime } = -y^{2} \]
i.c.

[_quadrature]

14628

\[ {}y^{\prime } = 2 y+1 \]
i.c.

[_quadrature]

14631

\[ {}y^{\prime } = \frac {1-y^{2}}{y} \]
i.c.

[_quadrature]

14633

\[ {}y^{\prime } = \frac {1}{2 y+3} \]
i.c.

[_quadrature]

14635

\[ {}y^{\prime } = \frac {y^{2}+5}{y} \]
i.c.

[_quadrature]

14638

\[ {}y^{\prime } = 1-2 y \]

[_quadrature]

14639

\[ {}y^{\prime } = 4 y^{2} \]

[_quadrature]

14640

\[ {}y^{\prime } = 2 y \left (1-y\right ) \]

[_quadrature]

14642

\[ {}y^{\prime } = 3 y \left (1-y\right ) \]
i.c.

[_quadrature]

14646

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

14647

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

14648

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

14649

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

14650

\[ {}S^{\prime } = S^{3}-2 S^{2}+S \]
i.c.

[_quadrature]

14651

\[ {}y^{\prime } = y^{2}+y \]

[_quadrature]

14652

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

14653

\[ {}y^{\prime } = y^{3}+y^{2} \]

[_quadrature]

14659

\[ {}\theta ^{\prime } = \frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10} \]

[_quadrature]

14661

\[ {}\theta ^{\prime } = \frac {11}{10}-\frac {9 \cos \left (\theta \right )}{10} \]

[_quadrature]

14662

\[ {}v^{\prime } = -\frac {v}{R C} \]

[_quadrature]

14663

\[ {}v^{\prime } = \frac {K -v}{R C} \]

[_quadrature]

14665

\[ {}y^{\prime } = 2 y+1 \]
i.c.

[_quadrature]

14668

\[ {}y^{\prime } = \sin \left (y\right ) \]
i.c.

[_quadrature]

14669

\[ {}w^{\prime } = \left (3-w\right ) \left (w+1\right ) \]
i.c.

[_quadrature]

14670

\[ {}w^{\prime } = \left (3-w\right ) \left (w+1\right ) \]
i.c.

[_quadrature]

14671

\[ {}y^{\prime } = {\mathrm e}^{\frac {2}{y}} \]
i.c.

[_quadrature]

14672

\[ {}y^{\prime } = {\mathrm e}^{\frac {2}{y}} \]
i.c.

[_quadrature]

14673

\[ {}y^{\prime } = y^{2}-y^{3} \]
i.c.

[_quadrature]

14675

\[ {}y^{\prime } = \sqrt {y} \]
i.c.

[_quadrature]

14676

\[ {}y^{\prime } = 2-y \]
i.c.

[_quadrature]

14677

\[ {}\theta ^{\prime } = \frac {9}{10}-\frac {11 \cos \left (\theta \right )}{10} \]
i.c.

[_quadrature]

14678

\[ {}y^{\prime } = y \left (-1+y\right ) \left (y-3\right ) \]
i.c.

[_quadrature]

14679

\[ {}y^{\prime } = y \left (-1+y\right ) \left (y-3\right ) \]
i.c.

[_quadrature]

14680

\[ {}y^{\prime } = y \left (-1+y\right ) \left (y-3\right ) \]
i.c.

[_quadrature]

14681

\[ {}y^{\prime } = y \left (-1+y\right ) \left (y-3\right ) \]
i.c.

[_quadrature]

14682

\[ {}y^{\prime } = -y^{2} \]

[_quadrature]

14683

\[ {}y^{\prime } = y^{3} \]
i.c.

[_quadrature]

14685

\[ {}y^{\prime } = \frac {1}{\left (2+y\right )^{2}} \]
i.c.

[_quadrature]

14687

\[ {}y^{\prime } = 3 y \left (-2+y\right ) \]
i.c.

[_quadrature]

14688

\[ {}y^{\prime } = 3 y \left (-2+y\right ) \]
i.c.

[_quadrature]

14689

\[ {}y^{\prime } = 3 y \left (-2+y\right ) \]
i.c.

[_quadrature]

14690

\[ {}y^{\prime } = 3 y \left (-2+y\right ) \]
i.c.

[_quadrature]

14691

\[ {}y^{\prime } = y^{2}-4 y-12 \]
i.c.

[_quadrature]

14692

\[ {}y^{\prime } = y^{2}-4 y-12 \]
i.c.

[_quadrature]

14693

\[ {}y^{\prime } = y^{2}-4 y-12 \]
i.c.

[_quadrature]

14694

\[ {}y^{\prime } = y^{2}-4 y-12 \]
i.c.

[_quadrature]

14695

\[ {}y^{\prime } = \cos \left (y\right ) \]
i.c.

[_quadrature]

14696

\[ {}y^{\prime } = \cos \left (y\right ) \]
i.c.

[_quadrature]

14697

\[ {}y^{\prime } = \cos \left (y\right ) \]
i.c.

[_quadrature]

14698

\[ {}y^{\prime } = \cos \left (y\right ) \]
i.c.

[_quadrature]

14699

\[ {}w^{\prime } = w \cos \left (w\right ) \]

[_quadrature]

14700

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

14701

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

14702

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

14703

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

14704

\[ {}w^{\prime } = \left (1-w\right ) \sin \left (w\right ) \]

[_quadrature]

14705

\[ {}y^{\prime } = \frac {1}{-2+y} \]

[_quadrature]

14706

\[ {}v^{\prime } = -v^{2}-2 v-2 \]

[_quadrature]

14707

\[ {}w^{\prime } = 3 w^{3}-12 w^{2} \]

[_quadrature]

14708

\[ {}y^{\prime } = 1+\cos \left (y\right ) \]

[_quadrature]

14709

\[ {}y^{\prime } = \tan \left (y\right ) \]

[_quadrature]

14710

\[ {}y^{\prime } = y \ln \left ({| y|}\right ) \]

[_quadrature]

14711

\[ {}w^{\prime } = \left (w^{2}-2\right ) \arctan \left (w\right ) \]

[_quadrature]

14712

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

14713

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

14714

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

14715

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

14716

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

14717

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

14718

\[ {}y^{\prime } = y \cos \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

14719

\[ {}y^{\prime } = y-y^{2} \]

[_quadrature]

14720

\[ {}y^{\prime } = y \sin \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

14721

\[ {}y^{\prime } = y^{3}-y^{2} \]

[_quadrature]

14722

\[ {}y^{\prime } = \cos \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

14723

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

14724

\[ {}y^{\prime } = y \sin \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

14725

\[ {}y^{\prime } = y^{2}-y^{3} \]

[_quadrature]

14765

\[ {}y^{\prime } = 3 y \]

[_quadrature]

14767

\[ {}y^{\prime } = -\sin \left (y\right )^{5} \]

[_quadrature]

14769

\[ {}y^{\prime } = \sin \left (y\right )^{2} \]

[_quadrature]

14772

\[ {}y^{\prime } = 3-2 y \]

[_quadrature]

14778

\[ {}y^{\prime } = 3+y^{2} \]

[_quadrature]

14779

\[ {}y^{\prime } = 2 y-y^{2} \]

[_quadrature]

14789

\[ {}y^{\prime } = 1-y^{2} \]
i.c.

[_quadrature]

14791

\[ {}y^{\prime } = y^{2}-2 y+1 \]
i.c.

[_quadrature]

14796

\[ {}y^{\prime } = 3-y^{2} \]
i.c.

[_quadrature]

14980

\[ {}y^{\prime } = 3-\sin \left (y\right ) \]

[_quadrature]

15026

\[ {}y^{\prime }-y^{3} = 8 \]

[_quadrature]

15029

\[ {}y^{3}-25 y+y^{\prime } = 0 \]

[_quadrature]

15032

\[ {}y^{\prime }+2 y-y^{2} = -2 \]

[_quadrature]

15034

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

15039

\[ {}y^{\prime }+4 y = 8 \]

[_quadrature]

15046

\[ {}y^{\prime } = y^{2}+9 \]

[_quadrature]

15056

\[ {}y^{\prime }-4 y = 2 \]

[_quadrature]

15058

\[ {}y^{\prime } = \sin \left (y\right ) \]

[_quadrature]

15060

\[ {}y^{\prime } = 200 y-2 y^{2} \]

[_quadrature]

15064

\[ {}y^{\prime } = \tan \left (y\right ) \]

[_quadrature]

15069

\[ {}y^{\prime } = {\mathrm e}^{-y} \]

[_quadrature]

15070

\[ {}y^{\prime } = {\mathrm e}^{-y}+1 \]

[_quadrature]

15075

\[ {}y^{\prime } = 200 y-2 y^{2} \]

[_quadrature]

15076

\[ {}y^{\prime }-2 y = -10 \]
i.c.

[_quadrature]

15088

\[ {}y^{\prime } = 4 y+8 \]

[_quadrature]

15091

\[ {}y^{\prime }+4 y = y^{3} \]

[_quadrature]

15093

\[ {}y^{\prime }+2 y = 6 \]

[_quadrature]

15103

\[ {}y^{\prime }-3 y = 6 \]
i.c.

[_quadrature]

15104

\[ {}y^{\prime }-3 y = 6 \]
i.c.

[_quadrature]

15120

\[ {}y^{\prime }+3 y = 3 y^{3} \]

[_quadrature]

15173

\[ {}\left (y^{2}-4\right ) y^{\prime } = y \]

[_quadrature]

15187

\[ {}y^{2}+1-y^{\prime } = 0 \]

[_quadrature]

15784

\[ {}{y^{\prime }}^{2}+y = 0 \]

[_quadrature]

15790

\[ {}y^{\prime }+2 y = 0 \]

[_quadrature]

15820

\[ {}y^{\prime }+2 y = 0 \]
i.c.

[_quadrature]

15864

\[ {}y^{\prime } = y^{{1}/{5}} \]
i.c.

[_quadrature]

15868

\[ {}y^{\prime } = 6 y^{{2}/{3}} \]
i.c.

[_quadrature]

15872

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]
i.c.

[_quadrature]

15873

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]
i.c.

[_quadrature]

15875

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]
i.c.

[_quadrature]

15876

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

15877

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

15878

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

15879

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

15890

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

15893

\[ {}y^{\prime } = -y^{3} \]
i.c.

[_quadrature]

15897

\[ {}y^{\prime } = \frac {1+y^{2}}{y} \]

[_quadrature]

15906

\[ {}y^{\prime }+k y = 0 \]

[_quadrature]

15925

\[ {}y^{\prime } = y^{2}-3 y+2 \]

[_quadrature]

15928

\[ {}y^{\prime } = y^{3}+1 \]

[_quadrature]

15929

\[ {}y^{\prime } = y^{3}-1 \]

[_quadrature]

15930

\[ {}y^{\prime } = y^{3}+y \]

[_quadrature]

15931

\[ {}y^{\prime } = y^{3}-y^{2} \]

[_quadrature]

15932

\[ {}y^{\prime } = y^{3}-y \]

[_quadrature]

15933

\[ {}y^{\prime } = y^{3}+y \]

[_quadrature]

15936

\[ {}1 = \cos \left (y\right ) y^{\prime } \]
i.c.

[_quadrature]

15942

\[ {}y^{\prime } = \frac {y}{\ln \left (y\right )} \]
i.c.

[_quadrature]

15958

\[ {}y^{\prime } = \left (3 y+1\right )^{4} \]

[_quadrature]

15959

\[ {}y^{\prime } = 3 y \]

[_quadrature]

15960

\[ {}y^{\prime } = -y \]

[_quadrature]

15961

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

15962

\[ {}y^{\prime } = 16 y-8 y^{2} \]

[_quadrature]

15963

\[ {}y^{\prime } = 12+4 y-y^{2} \]

[_quadrature]

15965

\[ {}y^{\prime }-y = 10 \]

[_quadrature]

16034

\[ {}-1+3 y^{2} y^{\prime } = 0 \]

[_quadrature]

16156

\[ {}y^{\prime }+y = 5 \]

[_quadrature]

16666

\[ {}y^{\prime } = y+3 y^{{1}/{3}} \]

[_quadrature]

16669

\[ {}y^{\prime } = \sqrt {1-y^{2}} \]

[_quadrature]

16672

\[ {}y^{\prime } = 1-\cot \left (y\right ) \]

[_quadrature]

16682

\[ {}y^{\prime } = \left (-1+y\right )^{2} \]

[_quadrature]

16696

\[ {}y^{\prime } = y \]

[_quadrature]

16697

\[ {}y^{\prime } = y^{2} \]

[_quadrature]

16709

\[ {}{\mathrm e}^{-y} y^{\prime } = 1 \]

[_quadrature]

16733

\[ {}{\mathrm e}^{y} = {\mathrm e}^{4 y} y^{\prime }+1 \]

[_quadrature]

16823

\[ {}{y^{\prime }}^{3} = {y^{\prime }}^{2} y-x^{2} y^{\prime }+x^{2} y \]

[_quadrature]

16826

\[ {}y = {y^{\prime }}^{2} {\mathrm e}^{y^{\prime }} \]

[_quadrature]

16827

\[ {}y^{\prime } = {\mathrm e}^{\frac {y^{\prime }}{y}} \]

[_quadrature]

16830

\[ {}y = y^{\prime } \ln \left (y^{\prime }\right ) \]

[_quadrature]

16831

\[ {}y = \left (y^{\prime }-1\right ) {\mathrm e}^{y^{\prime }} \]

[_quadrature]

16836

\[ {}y = y^{\prime } \left (1+y^{\prime } \cos \left (y^{\prime }\right )\right ) \]

[_quadrature]

16853

\[ {}{y^{\prime }}^{2}-4 y = 0 \]

[_quadrature]

16855

\[ {}{y^{\prime }}^{2}-y^{2} = 0 \]

[_quadrature]

16856

\[ {}y^{\prime } = y^{{2}/{3}}+a \]

[_quadrature]

16860

\[ {}\left (y^{\prime }-1\right )^{2} = y^{2} \]

[_quadrature]

17336

\[ {}y^{\prime } = \frac {b +a y}{d +c y} \]

[_quadrature]

17384

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

17388

\[ {}y^{3}+y^{\prime } = 0 \]
i.c.

[_quadrature]

17439

\[ {}y^{\prime } = y+\sqrt {y} \]

[_quadrature]

17440

\[ {}y^{\prime } = r y-k^{2} y^{2} \]

[_quadrature]

17441

\[ {}y^{\prime } = a y+b y^{3} \]

[_quadrature]

17455

\[ {}y^{\prime }+y-y^{{1}/{4}} = 0 \]

[_quadrature]

17543

\[ {}x^{\prime } = \frac {x \sqrt {6 x-9}}{3} \]
i.c.

[_quadrature]

17938

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y+y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

17942

\[ {}{y^{\prime }}^{3}+y^{3}-3 y y^{\prime } = 0 \]

[_quadrature]

17943

\[ {}y = {y^{\prime }}^{2} {\mathrm e}^{y^{\prime }} \]

[_quadrature]

17944

\[ {}y^{2} \left (y^{\prime }-1\right ) = \left (2-y^{\prime }\right )^{2} \]

[_quadrature]

17957

\[ {}y^{\prime } = \sqrt {y} \]

[_quadrature]

17958

\[ {}y^{\prime } = y \ln \left (y\right ) \]

[_quadrature]

17959

\[ {}y^{\prime } = y \ln \left (y\right )^{2} \]

[_quadrature]

17964

\[ {}y^{2} \left (y^{\prime }-1\right ) = \left (2-y^{\prime }\right )^{2} \]

[_quadrature]

18059

\[ {}y^{\prime } = k y \]

[_quadrature]

18069

\[ {}1+y^{2}+y^{2} y^{\prime } = 0 \]

[_quadrature]

18103

\[ {}v^{\prime } = g -\frac {k v^{2}}{m} \]

[_quadrature]

18494

\[ {}x^{\prime } = x^{2}-3 x+2 \]
i.c.

[_quadrature]

18495

\[ {}x^{\prime } = b \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

18496

\[ {}x^{\prime } = \left (x-1\right )^{2} \]
i.c.

[_quadrature]

18497

\[ {}x^{\prime } = \sqrt {x^{2}-1} \]
i.c.

[_quadrature]

18498

\[ {}x^{\prime } = 2 \sqrt {x} \]
i.c.

[_quadrature]

18499

\[ {}x^{\prime } = \tan \left (x\right ) \]
i.c.

[_quadrature]

18514

\[ {}x^{\prime } = -\lambda x \]

[_quadrature]

18532

\[ {}y^{\prime }+c y = a \]

[_quadrature]

18543

\[ {}x^{\prime } = k \left (A -n x\right ) \left (M -m x\right ) \]

[_quadrature]

18560

\[ {}2 {y^{\prime }}^{3}+{y^{\prime }}^{2}-y = 0 \]

[_quadrature]

18801

\[ {}{y^{\prime }}^{3}+2 x {y^{\prime }}^{2}-y^{2} {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0 \]

[_quadrature]

18811

\[ {}y = 2 y^{\prime }+3 {y^{\prime }}^{2} \]

[_quadrature]

18814

\[ {}y^{2} = a^{2} \left ({y^{\prime }}^{2}+1\right ) \]

[_quadrature]

18841

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y+y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

18845

\[ {}y-\frac {1}{\sqrt {{y^{\prime }}^{2}+1}} = b \]

[_quadrature]

18856

\[ {}a {y^{\prime }}^{3} = 27 y \]

[_quadrature]

19140

\[ {}{x^{\prime }}^{2} = k^{2} \left (1-{\mathrm e}^{-\frac {2 g x}{k^{2}}}\right ) \]
i.c.

[_quadrature]

19219

\[ {}x +{y^{\prime }}^{2} y = \left (1+x y\right ) y^{\prime } \]

[_quadrature]

19222

\[ {}{y^{\prime }}^{2}+y^{\prime } x +y y^{\prime }+x y = 0 \]

[_quadrature]

19223

\[ {}{y^{\prime }}^{3}-y^{\prime } \left (x^{2}+x y+y^{2}\right )+x y \left (x +y\right ) = 0 \]

[_quadrature]

19227

\[ {}{y^{\prime }}^{3}+2 x {y^{\prime }}^{2}-y^{2} {y^{\prime }}^{2}-2 x y^{2} y^{\prime } = 0 \]

[_quadrature]

19228

\[ {}\left (2-3 y\right )^{2} {y^{\prime }}^{2} = 4-4 y \]

[_quadrature]

19232

\[ {}3 {y^{\prime }}^{5}-y y^{\prime }+1 = 0 \]

[_quadrature]

19235

\[ {}{y^{\prime }}^{3}+y^{\prime } = {\mathrm e}^{y} \]

[_quadrature]

19236

\[ {}y = \sin \left (y^{\prime }\right )-y^{\prime } \cos \left (y^{\prime }\right ) \]

[_quadrature]

19260

\[ {}y = \frac {2 a {y^{\prime }}^{2}}{\left ({y^{\prime }}^{2}+1\right )^{2}} \]

[_quadrature]

19273

\[ {}y = a y^{\prime }+\sqrt {{y^{\prime }}^{2}+1} \]

[_quadrature]

19275

\[ {}y = a y^{\prime }+b {y^{\prime }}^{2} \]

[_quadrature]

19276

\[ {}{y^{\prime }}^{3}-\left (y+2 x -{\mathrm e}^{x -y}\right ) {y^{\prime }}^{2}+\left (2 x y-2 x \,{\mathrm e}^{x -y}-y \,{\mathrm e}^{x -y}\right ) y^{\prime }+2 x y \,{\mathrm e}^{x -y} = 0 \]

[_quadrature]

19290

\[ {}{y^{\prime }}^{2}+y^{2} = 1 \]

[_quadrature]

19291

\[ {}\left (2-3 y\right )^{2} {y^{\prime }}^{2} = 4-4 y \]

[_quadrature]

19300

\[ {}\left (1-y^{2}\right ) {y^{\prime }}^{2} = 1 \]

[_quadrature]

19305

\[ {}{y^{\prime }}^{2} = \left (1+4 y\right ) \left (y^{\prime }-y\right ) \]

[_quadrature]

19544

\[ {}{y^{\prime }}^{3}-\left (x^{2}+x y+y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

[_quadrature]

19548

\[ {}y-\frac {1}{\sqrt {{y^{\prime }}^{2}+1}} = b \]

[_quadrature]