2.2.197 Problems 19601 to 19642

Table 2.395: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

19601

\[ {}\left (y^{2}+2 x^{2} y^{\prime }\right ) y^{\prime \prime }+2 {y^{\prime }}^{2} \left (x +y\right )+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_poly_yn]]

148.979

19602

\[ {}y^{\prime \prime \prime } = x \,{\mathrm e}^{x} \]

[[_3rd_order, _quadrature]]

0.132

19603

\[ {}y^{\prime \prime } = x^{2} \sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

2.729

19604

\[ {}y^{\prime \prime } = \sec \left (x \right )^{2} \]

[[_2nd_order, _quadrature]]

2.891

19605

\[ {}y^{\prime \prime }+y^{\prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x]]

2.235

19606

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.881

19607

\[ {}y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.617

19608

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} \ln \left (y\right ) \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

4.957

19609

\[ {}y^{\prime }-y y^{\prime \prime } = n \sqrt {{y^{\prime }}^{2}+a^{2} y^{\prime \prime }} \]

[[_2nd_order, _missing_x]]

19.602

19610

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

1.033

19611

\[ {}y^{\prime \prime \prime \prime }-a^{2} y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.086

19612

\[ {}x^{4} y^{\prime \prime } = \left (y-y^{\prime } x \right )^{3} \]

[[_2nd_order, _with_linear_symmetries]]

0.144

19613

\[ {}x y^{\prime \prime }+2 y^{\prime } = x^{2} y^{\prime }-y^{2} \]

[NONE]

0.186

19614

\[ {}x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.099

19615

\[ {}\sin \left (x \right )^{2} y^{\prime \prime } = 2 y \]

[[_2nd_order, _with_linear_symmetries]]

0.791

19616

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -y = x \left (-x^{2}+1\right )^{{3}/{2}} \]

[[_2nd_order, _with_linear_symmetries]]

2.697

19617

\[ {}\left (x +2\right ) y^{\prime \prime }-\left (5+2 x \right ) y^{\prime }+2 y = \left (x +1\right ) {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

1.957

19618

\[ {}y^{\prime \prime }-\cot \left (x \right ) y^{\prime }-\left (1-\cot \left (x \right )\right ) y = {\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.053

19619

\[ {}\left (x \sin \left (x \right )+\cos \left (x \right )\right ) y^{\prime \prime }-x \cos \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9.685

19620

\[ {}y^{\prime \prime }+\left (1+\frac {2 \cot \left (x \right )}{x}-\frac {2}{x^{2}}\right ) y = x \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.636

19621

\[ {}x^{2} y^{\prime \prime }-2 \left (x^{2}+x \right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.019

19622

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.784

19623

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x^{{1}/{3}}}+\left (\frac {1}{4 x^{{2}/{3}}}-\frac {1}{6 x^{{4}/{3}}}-\frac {6}{x^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.332

19624

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+y = 0 \]

[_Lienard]

3.477

19625

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.574

19626

\[ {}y^{\prime \prime }-\left (8 \,{\mathrm e}^{2 x}+2\right ) y^{\prime }+4 \,{\mathrm e}^{4 x} y = {\mathrm e}^{6 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.072

19627

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+\frac {\csc \left (x \right )^{2} y}{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.282

19628

\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y = \frac {1}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.037

19629

\[ {}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = 8 x^{3} \sin \left (x^{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.977

19630

\[ {}\cos \left (x \right ) y^{\prime \prime }+\sin \left (x \right ) y^{\prime }-2 y \cos \left (x \right )^{3} = 2 \cos \left (x \right )^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.591

19631

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 4 \cos \left (\ln \left (x +1\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6.551

19632

\[ {}x y^{\prime \prime }+\left (x -1\right ) y^{\prime }-y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.436

19633

\[ {}3 x^{2} y^{\prime \prime }+\left (-6 x^{2}+6 x +2\right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.740

19634

\[ {}y^{\prime \prime }+a^{2} y = \sec \left (a x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.553

19635

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{2} {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.671

19636

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

2.112

19637

\[ {}y^{\prime \prime }+\left (1-\cot \left (x \right )\right ) y^{\prime }-y \cot \left (x \right ) = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.241

19638

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = {\mathrm e}^{2 x} \]

[[_3rd_order, _with_linear_symmetries]]

0.143

19639

\[ {}\left [\begin {array}{c} x^{\prime }-7 x+y=0 \\ y^{\prime }-2 x-5 y=0 \end {array}\right ] \]

system_of_ODEs

0.572

19640

\[ {}\left [\begin {array}{c} x^{\prime }+5 x+y={\mathrm e}^{t} \\ y^{\prime }-x+3 y={\mathrm e}^{2 t} \end {array}\right ] \]

system_of_ODEs

0.585

19641

\[ {}\left [\begin {array}{c} 4 x^{\prime }+9 y^{\prime }+11 x+31 y={\mathrm e}^{t} \\ 3 x^{\prime }+7 y^{\prime }+8 x+24 y={\mathrm e}^{2 t} \end {array}\right ] \]

system_of_ODEs

0.617

19642

\[ {}\left [\begin {array}{c} t x^{\prime }=t -2 x \\ t y^{\prime }=t x+t y+2 x-t \end {array}\right ] \]

system_of_ODEs

0.059