2.2.194 Problems 19301 to 19400

Table 2.389: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

19301

\[ {}y+x^{2} = {y^{\prime }}^{2} \]

[[_homogeneous, ‘class G‘]]

2.036

19302

\[ {}{y^{\prime }}^{3} = y^{4} \left (y^{\prime } x +y\right ) \]

[[_1st_order, _with_linear_symmetries]]

10.284

19303

\[ {}\left (1-y^{\prime }\right )^{2}-{\mathrm e}^{-2 y} = {y^{\prime }}^{2} {\mathrm e}^{-2 x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

14.989

19304

\[ {}a x y {y^{\prime }}^{2}+\left (x^{2}-a y^{2}-b \right ) y^{\prime }-x y = 0 \]

[_rational]

179.686

19305

\[ {}{y^{\prime }}^{2} = \left (4 y+1\right ) \left (y^{\prime }-y\right ) \]

[_quadrature]

1.061

19306

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+b^{2}-y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

1.695

19307

\[ {}x y {y^{\prime }}^{2}-\left (x^{2}+y^{2}-1\right ) y^{\prime }+x y = 0 \]

[_rational]

106.644

19308

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}-h^{2}\right ) y^{\prime }-x y = 0 \]

[‘y=_G(x,y’)‘]

11.396

19309

\[ {}8 {y^{\prime }}^{3} x = y \left (12 {y^{\prime }}^{2}-9\right ) \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.941

19310

\[ {}4 {y^{\prime }}^{2} x^{2} \left (x -1\right )-4 y^{\prime } x y \left (4 x -3\right )+\left (16 x -9\right ) y^{2} = 0 \]

[_separable]

0.566

19311

\[ {}\left (x^{2} y^{\prime }+y^{2}\right ) \left (y^{\prime } x +y\right ) = \left (1+y^{\prime }\right )^{2} \]

[‘y=_G(x,y’)‘]

53.012

19312

\[ {}y-y^{\prime } x = a \left (y^{2}+y^{\prime }\right ) \]

[_separable]

1.247

19313

\[ {}y-y^{\prime } x = b \left (1+x^{2} y^{\prime }\right ) \]

[_separable]

0.964

19314

\[ {}\left (-y+y^{\prime } x \right ) \left (x -y y^{\prime }\right ) = 2 y^{\prime } \]

[_rational]

135.090

19315

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_Emden, _Fowler]]

1.105

19316

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 2 \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

1.812

19317

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

0.123

19318

\[ {}x^{2} y^{\prime \prime \prime }-2 y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

0.178

19319

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = \ln \left (x \right )^{2} \]

[[_3rd_order, _with_linear_symmetries]]

0.269

19320

\[ {}y^{\prime \prime \prime }-\frac {4 y^{\prime \prime }}{x}+\frac {5 y^{\prime }}{x^{2}}-\frac {2 y}{x^{3}} = 1 \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.450

19321

\[ {}x^{2} y^{\prime \prime \prime }+x y^{\prime \prime }-4 y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

0.184

19322

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 y^{\prime } x -8 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.125

19323

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +5 y = 0 \]

[[_Emden, _Fowler]]

2.389

19324

\[ {}x^{2} y^{\prime \prime \prime }+3 x y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

0.261

19325

\[ {}x^{2} y^{\prime \prime }+y = 3 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.513

19326

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y = x^{5} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.703

19327

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

1.552

19328

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

1.602

19329

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y = x^{4} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.604

19330

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{m} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.156

19331

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{m} \]

[[_2nd_order, _with_linear_symmetries]]

1.673

19332

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x = \ln \left (x \right ) \]

[[_2nd_order, _missing_y]]

1.058

19333

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.069

19334

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y = x \]

[[_2nd_order, _with_linear_symmetries]]

1.567

19335

\[ {}x^{2} y^{\prime \prime \prime }+3 x y^{\prime \prime }+2 y^{\prime } = x \]

[[_3rd_order, _missing_y]]

0.429

19336

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 4 x \]

[[_high_order, _with_linear_symmetries]]

0.664

19337

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+8 y^{\prime } x +2 y = x^{2}+3 x -4 \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.747

19338

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -20 y = \left (x +1\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.402

19339

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 y^{\prime } x -8 y = x^{2}+\frac {1}{x^{2}} \]

[[_3rd_order, _reducible, _mu_y2]]

0.314

19340

\[ {}x^{4} y^{\prime \prime \prime \prime }+2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-y^{\prime } x +y = x +\ln \left (x \right ) \]

[[_high_order, _with_linear_symmetries]]

0.431

19341

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = x \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

11.569

19342

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +5 y = x^{2} \sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

11.303

19343

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y = x \ln \left (x \right ) \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.265

19344

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \left (1+\ln \left (x \right )\right )^{2} \]

[[_high_order, _linear, _nonhomogeneous]]

0.735

19345

\[ {}\left (5+2 x \right )^{2} y^{\prime \prime }-6 \left (5+2 x \right ) y^{\prime }+8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.883

19346

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime } = \left (2 x +3\right ) \left (2 x +4\right ) \]

[[_2nd_order, _missing_y]]

1.224

19347

\[ {}x y^{\prime \prime }+2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.197

19348

\[ {}y^{\prime \prime }+{\mathrm e}^{x} \left (y^{\prime }+y\right ) = {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.297

19349

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.473

19350

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+8 y^{\prime } x +2 y = x^{2}+3 x -4 \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.755

19351

\[ {}x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

0.298

19352

\[ {}y^{\prime \prime }+2 \,{\mathrm e}^{x} y^{\prime }+2 y \,{\mathrm e}^{x} = x^{2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.887

19353

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+2 \left (2 x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.403

19354

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.263

19355

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3.065

19356

\[ {}\left (2 x^{2}+3 x \right ) y^{\prime \prime }+\left (6 x +3\right ) y^{\prime }+2 y = \left (x +1\right ) {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.487

19357

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}+y y^{\prime } = 0 \]

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.501

19358

\[ {}\left (-b \,x^{2}+a x \right ) y^{\prime \prime }+2 a y^{\prime }+2 b y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.487

19359

\[ {}\sin \left (x \right ) y^{\prime \prime }-y^{\prime } \cos \left (x \right )+2 \sin \left (x \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.412

19360

\[ {}x^{2} y^{\prime \prime \prime }+4 x y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime }+3 x y = 2 \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.062

19361

\[ {}x^{5} y^{\left (6\right )}+x^{4} y^{\left (5\right )}+y^{\prime } x +y = \ln \left (x \right ) \]

[[_high_order, _exact, _linear, _nonhomogeneous]]

0.697

19362

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+x \left (x^{2}+2\right ) y^{\prime }+3 x^{2} y = 2 x \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.390

19363

\[ {}x^{5} y^{\prime \prime }+3 x^{3} y^{\prime }+\left (3-6 x \right ) x^{2} y = x^{4}+2 x -5 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.812

19364

\[ {}y^{\prime \prime \prime } = f \left (x \right ) \]

[[_3rd_order, _quadrature]]

0.434

19365

\[ {}y^{2}+\left (2 x y-1\right ) y^{\prime }+x y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = 0 \]

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

0.058

19366

\[ {}y^{\prime \prime } = x +\sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

2.341

19367

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

[[_2nd_order, _quadrature]]

1.987

19368

\[ {}y^{\prime \prime } \cos \left (x \right )^{2} = 1 \]

[[_2nd_order, _quadrature]]

1.279

19369

\[ {}x^{3} y^{\prime \prime \prime } = 1 \]

[[_3rd_order, _quadrature]]

0.210

19370

\[ {}y^{\prime \prime } = \frac {a}{x} \]

[[_2nd_order, _quadrature]]

1.999

19371

\[ {}y^{\prime \prime \prime } \csc \left (x \right )^{2} = 1 \]

[[_3rd_order, _quadrature]]

0.189

19372

\[ {}y^{\prime \prime } \sqrt {a^{2}+x^{2}} = x \]

[[_2nd_order, _quadrature]]

0.862

19373

\[ {}x^{2} y^{\prime \prime } = \ln \left (x \right ) \]

[[_2nd_order, _quadrature]]

0.730

19374

\[ {}y^{\prime \prime } = y \]

[[_2nd_order, _missing_x]]

2.246

19375

\[ {}y^{3} y^{\prime \prime } = a \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.981

19376

\[ {}y^{\prime \prime }-a^{2} y = 0 \]

[[_2nd_order, _missing_x]]

3.124

19377

\[ {}y^{\prime \prime }+\frac {a^{2}}{y} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.612

19378

\[ {}y^{\prime \prime } = y^{3}-y \]

[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]]

2.378

19379

\[ {}y^{\prime \prime } = {\mathrm e}^{2 y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

25.134

19380

\[ {}y^{\prime \prime } = y^{\prime } x \]

[[_2nd_order, _missing_y]]

0.941

19381

\[ {}y^{\prime \prime } = \sqrt {{y^{\prime }}^{2}+1} \]

[[_2nd_order, _missing_x]]

2.397

19382

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

2.082

19383

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 0 \]

[[_2nd_order, _missing_y]]

0.827

19384

\[ {}x^{2} y^{\prime \prime \prime }-4 x y^{\prime \prime }+6 y^{\prime } = 4 \]

[[_3rd_order, _missing_y]]

0.208

19385

\[ {}y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x \left (a^{2}-x^{2}\right )} = \frac {x^{2}}{a \left (a^{2}-x^{2}\right )} \]

[[_2nd_order, _missing_y]]

1.715

19386

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +a x = 0 \]

[[_2nd_order, _missing_y]]

1.594

19387

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x = a x \]

[[_2nd_order, _missing_y]]

34.771

19388

\[ {}x y^{\prime \prime }+x {y^{\prime }}^{2}-y^{\prime } = 0 \]

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.408

19389

\[ {}x y^{\prime \prime \prime }-x y^{\prime \prime }-y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

0.263

19390

\[ {}y^{\prime }-x y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2}}{a} = 0 \]

[[_2nd_order, _missing_y]]

0.740

19391

\[ {}x y^{\prime \prime }+y^{\prime } = x \]

[[_2nd_order, _missing_y]]

1.099

19392

\[ {}\left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2}}{a} = 0 \]

[[_2nd_order, _missing_y]]

1.656

19393

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.573

19394

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.242

19395

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.273

19396

\[ {}y^{\prime \prime }+2 y^{\prime }+4 {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

2.273

19397

\[ {}y^{\prime \prime } = a {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.395

19398

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.229

19399

\[ {}y y^{\prime \prime }+\sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x]]

31.365

19400

\[ {}a y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

1.219