2.2.192 Problems 19101 to 19200

Table 2.385: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

19101

\[ {}\sin \left (x \right ) \cos \left (x \right ) y^{\prime } = y+\sin \left (x \right ) \]

[_linear]

2.934

19102

\[ {}\left (1+x +x y^{2}\right ) y^{\prime }+y+y^{3} = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.341

19103

\[ {}y^{2}+\left (x -\frac {1}{y}\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

1.829

19104

\[ {}y^{\prime }+3 x^{2} y = x^{5} {\mathrm e}^{x^{3}} \]

[_linear]

1.411

19105

\[ {}y^{\prime }-\frac {\tan \left (y\right )}{x +1} = \left (x +1\right ) {\mathrm e}^{x} \sec \left (y\right ) \]

[‘y=_G(x,y’)‘]

44.417

19106

\[ {}y^{\prime }+\frac {\left (1-2 x \right ) y}{x^{2}} = 1 \]

[_linear]

1.625

19107

\[ {}y^{\prime }+\frac {2 y}{x} = \sin \left (x \right ) \]

[_linear]

1.413

19108

\[ {}1+y^{2} = \left (\arctan \left (y\right )-x \right ) y^{\prime } \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

5.403

19109

\[ {}1+y+x^{2} y+\left (x^{3}+x \right ) y^{\prime } = 0 \]

[_linear]

1.278

19110

\[ {}y^{\prime }+\frac {x y}{x^{2}+1} = \frac {1}{2 x \left (x^{2}+1\right )} \]

[_linear]

1.297

19111

\[ {}y^{\prime }+\frac {\tan \left (y\right )}{x} = \frac {\tan \left (y\right ) \sin \left (y\right )}{x^{2}} \]

[‘y=_G(x,y’)‘]

43.503

19112

\[ {}y^{\prime }+\frac {y \ln \left (y\right )}{x} = \frac {y}{x^{2}}-\ln \left (y\right )^{2} \]

[‘x=_G(y,y’)‘]

1.559

19113

\[ {}y^{\prime }+x = x \,{\mathrm e}^{\left (n -1\right ) y} \]

[_separable]

1.546

19114

\[ {}y \left (2 x y+{\mathrm e}^{x}\right )-{\mathrm e}^{x} y^{\prime } = 0 \]

[_Bernoulli]

2.220

19115

\[ {}2 y^{\prime }-y \sec \left (x \right ) = y^{3} \tan \left (x \right ) \]

[_Bernoulli]

11.379

19116

\[ {}y^{\prime }+y \cos \left (x \right ) = y^{n} \sin \left (2 x \right ) \]

[_Bernoulli]

4.795

19117

\[ {}x +y y^{\prime } = \frac {a^{2} \left (-y+y^{\prime } x \right )}{x^{2}+y^{2}} \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

1.440

19118

\[ {}1+4 x y+2 y^{2}+\left (1+4 x y+2 x^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.485

19119

\[ {}x^{2} y-2 x y^{2}-\left (x^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.020

19120

\[ {}\left (x^{4} y^{4}+x^{2} y^{2}+x y\right ) y+\left (x^{4} y^{4}-x^{2} y^{2}+x y\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

3.059

19121

\[ {}y \left (x y+2 x^{2} y^{2}\right )+x \left (x y-x^{2} y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.805

19122

\[ {}y^{4}+2 y+\left (x y^{3}+2 y^{4}-4 x \right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3.020

19123

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7.764

19124

\[ {}\left (20 x^{2}+8 x y+4 y^{2}+3 y^{3}\right ) y+4 \left (x^{2}+x y+y^{2}+y^{3}\right ) x y^{\prime } = 0 \]

[_rational]

1.767

19125

\[ {}y^{2}+2 x^{2} y+\left (2 x^{3}-x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.635

19126

\[ {}2 y+3 y^{\prime } x +2 x y \left (3 y+4 y^{\prime } x \right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.978

19127

\[ {}\frac {x +y y^{\prime }}{-y+y^{\prime } x} = \sqrt {\frac {a^{2}-x^{2}-y^{2}}{x^{2}+y^{2}}} \]

[[_1st_order, _with_linear_symmetries]]

332.481

19128

\[ {}\frac {\left (x +y-a \right ) y^{\prime }}{x +y-b} = \frac {x +y+a}{x +y+b} \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

3.552

19129

\[ {}\left (x -y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.256

19130

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

4.328

19131

\[ {}y^{\prime } = \left (4 x +y+1\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

6.646

19132

\[ {}-y+y^{\prime } x = x \sqrt {x^{2}+y^{2}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4.024

19133

\[ {}y^{\prime } x +y \ln \left (y\right ) = x y \,{\mathrm e}^{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.341

19134

\[ {}-y+y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.353

19135

\[ {}x \left (x^{2}+y^{2}-a^{2}\right )+\left (x^{2}-y^{2}-b^{2}\right ) y y^{\prime } = 0 \]

[_exact, _rational]

1.658

19136

\[ {}y^{\prime } = \frac {1+x^{2}+y^{2}}{2 x y} \]

[_rational, _Bernoulli]

2.007

19137

\[ {}x +y y^{\prime } = m \left (-y+y^{\prime } x \right ) \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.701

19138

\[ {}y+\left (a \,x^{2} y^{n}-2 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1.325

19139

\[ {}y \left (2 x^{2} y+{\mathrm e}^{x}\right )-\left ({\mathrm e}^{x}+y^{3}\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

1.827

19140

\[ {}{x^{\prime }}^{2} = k^{2} \left (1-{\mathrm e}^{-\frac {2 g x}{k^{2}}}\right ) \]
i.c.

[_quadrature]

0.364

19141

\[ {}y y^{\prime }+b y^{2} = a \cos \left (x \right ) \]

[_Bernoulli]

2.246

19142

\[ {}y^{\prime } = {\mathrm e}^{3 x -2 y}+x^{2} {\mathrm e}^{-2 y} \]

[_separable]

1.441

19143

\[ {}x^{2}+y^{2}+x -\left (2 x^{2}+2 y^{2}-y\right ) y^{\prime } = 0 \]

[_rational]

1.351

19144

\[ {}2 y+3 y^{\prime } x +2 x y \left (3 y+4 y^{\prime } x \right ) = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.257

19145

\[ {}y \left (1+\frac {1}{x}\right )+\cos \left (y\right )+\left (x +\ln \left (x \right )-x \sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

37.886

19146

\[ {}\left (2 x +2 y+3\right ) y^{\prime } = x +y+1 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.851

19147

\[ {}y^{\prime } = \frac {x \left (2 \ln \left (x \right )+1\right )}{\sin \left (y\right )+y \cos \left (y\right )} \]

[_separable]

34.681

19148

\[ {}s^{\prime }+x^{2} = x^{2} {\mathrm e}^{3 s} \]

[_separable]

1.827

19149

\[ {}y^{\prime } = {\mathrm e}^{x -y} \left ({\mathrm e}^{x}-{\mathrm e}^{y}\right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2.168

19150

\[ {}y^{\prime } = \sin \left (x +y\right )+\cos \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

150.448

19151

\[ {}y^{\prime }+\frac {\tan \left (y\right )}{x} = \frac {\tan \left (y\right ) \sin \left (y\right )}{x^{2}} \]

[‘y=_G(x,y’)‘]

43.530

19152

\[ {}x^{2}-a y = \left (a x -y^{2}\right ) y^{\prime } \]

[_exact, _rational]

1.059

19153

\[ {}y \left (2 x y+{\mathrm e}^{x}\right )-{\mathrm e}^{x} y^{\prime } = 0 \]

[_Bernoulli]

2.210

19154

\[ {}x^{2} y^{\prime }+y^{2} = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18.089

19155

\[ {}y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{{3}/{2}}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \]

[_linear]

3.293

19156

\[ {}y-y^{\prime } x +x^{2}+1+x^{2} \sin \left (y\right ) y^{\prime } = 0 \]

[‘x=_G(y,y’)‘]

1.783

19157

\[ {}\sec \left (y\right )^{2} y^{\prime }+2 x \tan \left (y\right ) = x^{3} \]

[‘y=_G(x,y’)‘]

3.118

19158

\[ {}y^{\prime }+\frac {a x +b y+c}{b x +f y+e} = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.554

19159

\[ {}y^{\prime \prime }-n^{2} y = 0 \]

[[_2nd_order, _missing_x]]

3.051

19160

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

0.068

19161

\[ {}2 x^{\prime \prime }+5 x^{\prime }-12 x = 0 \]

[[_2nd_order, _missing_x]]

1.070

19162

\[ {}y^{\prime \prime }+3 y^{\prime }-54 y = 0 \]

[[_2nd_order, _missing_x]]

1.076

19163

\[ {}9 x^{\prime \prime }+18 x^{\prime }-16 x = 0 \]

[[_2nd_order, _missing_x]]

1.093

19164

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+3 y = 0 \]

[[_3rd_order, _missing_x]]

0.070

19165

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.168

19166

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

0.069

19167

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = 0 \]

[[_high_order, _missing_x]]

0.075

19168

\[ {}y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

0.083

19169

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime }-5 y = 0 \]

[[_3rd_order, _missing_x]]

0.075

19170

\[ {}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

0.076

19171

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

0.072

19172

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

[[_high_order, _missing_x]]

0.082

19173

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{4 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.202

19174

\[ {}y^{\prime \prime }-y = 2+5 x \]

[[_2nd_order, _with_linear_symmetries]]

1.345

19175

\[ {}y^{\prime \prime }+2 y^{\prime }-15 y = 15 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.320

19176

\[ {}y^{\prime \prime }+y = \sec \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.101

19177

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \,{\mathrm e}^{\frac {5 x}{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1.399

19178

\[ {}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

20.780

19179

\[ {}y^{\prime \prime }+2 p y^{\prime }+\left (p^{2}+q^{2}\right ) y = {\mathrm e}^{k x} \]

[[_2nd_order, _with_linear_symmetries]]

6.072

19180

\[ {}y^{\prime \prime }+9 y = \cos \left (2 x \right )+\sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.670

19181

\[ {}y^{\prime \prime }+a^{2} y = \cos \left (a x \right )+\cos \left (b x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.591

19182

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{x}+\sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.760

19183

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }-12 y = \cos \left (4 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.217

19184

\[ {}y^{\prime \prime }-4 y = 2 \sin \left (\frac {x}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.664

19185

\[ {}y^{\prime \prime }+y = \sin \left (3 x \right )-\cos \left (\frac {x}{2}\right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.408

19186

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 = 0 \]

[[_3rd_order, _missing_x]]

0.103

19187

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = x \]

[[_3rd_order, _with_linear_symmetries]]

0.109

19188

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-6 y^{\prime } = x^{2}+1 \]

[[_3rd_order, _missing_y]]

0.115

19189

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x}+x^{2}+x \]

[[_3rd_order, _missing_y]]

0.133

19190

\[ {}y^{\prime \prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{x} \]

[[_3rd_order, _with_linear_symmetries]]

0.115

19191

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

20.615

19192

\[ {}y^{\prime \prime }-2 y^{\prime }+4 y = {\mathrm e}^{x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

43.392

19193

\[ {}y^{\prime \prime }-y = \cosh \left (x \right ) \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.041

19194

\[ {}y^{\prime \prime \prime }-7 y^{\prime }-6 y = {\mathrm e}^{2 x} \left (x +1\right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.130

19195

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime }+y = a \,x^{2}+b \,{\mathrm e}^{-x} \sin \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

1.093

19196

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \left (x -1\right ) {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.476

19197

\[ {}y^{\prime \prime }+2 y^{\prime }+y = x \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.720

19198

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = x^{2} \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

1.100

19199

\[ {}y^{\prime \prime \prime \prime }-y = x \sin \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.528

19200

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.702