2.2.185 Problems 18401 to 18500

Table 2.371: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

18401

\[ {}y^{\prime \prime \prime \prime } = \frac {1}{x^{3}} \]

[[_high_order, _quadrature]]

0.179

18402

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime } = x +1 \]

[[_3rd_order, _missing_y]]

0.117

18403

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime } = x \]

[[_3rd_order, _missing_y]]

0.112

18404

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = {\mathrm e}^{2 x} \]

[[_3rd_order, _with_linear_symmetries]]

0.123

18405

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 12 \,{\mathrm e}^{-x} \]

[[_3rd_order, _with_linear_symmetries]]

0.130

18406

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.585

18407

\[ {}y^{\prime } = 2 x y \]

[_separable]

0.583

18408

\[ {}y^{\prime }+y = 1 \]

[_quadrature]

0.355

18409

\[ {}y^{\prime } x = y \]

[_separable]

0.503

18410

\[ {}x^{2} y^{\prime } = y \]

[_separable]

0.085

18411

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

0.318

18412

\[ {}y^{\prime } = x -y \]
i.c.

[[_linear, ‘class A‘]]

0.616

18413

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.558

18414

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.102

18415

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.484

18416

\[ {}y^{\prime \prime }+y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.519

18417

\[ {}y^{\prime \prime }+x y = 0 \]

[[_Emden, _Fowler]]

0.489

18418

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +n^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.645

18419

\[ {}y^{\prime \prime }-2 y^{\prime } x +2 n y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.573

18420

\[ {}x^{3} \left (x -1\right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+3 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.125

18421

\[ {}x^{2} \left (x^{2}-1\right )^{2} y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.870

18422

\[ {}x^{2} y^{\prime \prime }+\left (2-x \right ) y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.167

18423

\[ {}\left (3 x +1\right ) x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.283

18424

\[ {}y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.654

18425

\[ {}x y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.129

18426

\[ {}x^{2} y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.149

18427

\[ {}x^{3} y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.743

18428

\[ {}x^{4} y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.129

18429

\[ {}x^{3} y^{\prime \prime }+\left (\cos \left (2 x \right )-1\right ) y^{\prime }+2 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.900

18430

\[ {}4 x^{2} y^{\prime \prime }+\left (2 x^{4}-5 x \right ) y^{\prime }+\left (3 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.880

18431

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.797

18432

\[ {}2 x y^{\prime \prime }+\left (3-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.777

18433

\[ {}2 x y^{\prime \prime }+\left (x +1\right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.812

18434

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x -\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.850

18435

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +x^{2} y = 0 \]

[_Lienard]

0.632

18436

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.118

18437

\[ {}y^{\prime \prime }+\frac {n y^{\prime }}{x^{2}}+\frac {q y}{x^{3}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.123

18438

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +\left (4 x +4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.780

18439

\[ {}4 x^{2} y^{\prime \prime }-8 x^{2} y^{\prime }+\left (4 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.830

18440

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

0.706

18441

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.911

18442

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.697

18443

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y = 0 \]

[_Bessel]

1.110

18444

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.793

18445

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }+2 y = 0 \]

[_Jacobi]

0.855

18446

\[ {}\left (2 x^{2}+2 x \right ) y^{\prime \prime }+\left (1+5 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.728

18447

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+\left (5 x +4\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.921

18448

\[ {}\left (x^{2}-x -6\right ) y^{\prime \prime }+\left (5+3 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.895

18449

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (1-3 x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.670

18450

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +n \left (n +1\right ) y = 0 \]

[_Gegenbauer]

0.964

18451

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (-n^{2}+x^{2}\right ) y = 0 \]

[_Bessel]

0.190

18452

\[ {}y^{\prime }+y = 3 \,{\mathrm e}^{2 x} \]
i.c.

[[_linear, ‘class A‘]]

0.390

18453

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.216

18454

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 2 \]
i.c.

[[_2nd_order, _missing_x]]

0.276

18455

\[ {}y^{\prime \prime }+y^{\prime } = 3 x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

0.263

18456

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \,{\mathrm e}^{-x} \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.355

18457

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.193

18458

\[ {}x y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }-\left (4 x +9\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.214

18459

\[ {}x y^{\prime \prime }+\left (2 x +3\right ) y^{\prime }+\left (x +3\right ) y = 3 \,{\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.324

18460

\[ {}y^{\prime \prime }+x^{2} y = 0 \]
i.c.

[[_Emden, _Fowler]]

1.782

18461

\[ {}y^{\prime \prime }+a^{2} y = f \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.615

18462

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 4 \,{\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.359

18463

\[ {}y^{\prime \prime }+y^{\prime }-6 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.281

18464

\[ {}y^{\prime \prime }-y^{\prime } = t^{2} \]
i.c.

[[_2nd_order, _missing_y]]

0.265

18465

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.604

18466

\[ {}\left [\begin {array}{c} x^{\prime }=x+3 y \\ y^{\prime }=3 x+y \end {array}\right ] \]
i.c.

system_of_ODEs

0.516

18467

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y \\ y^{\prime }=3 x+2 y \end {array}\right ] \]

system_of_ODEs

0.414

18468

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y+t -1 \\ y^{\prime }=3 x+2 y-5 t -2 \end {array}\right ] \]

system_of_ODEs

0.501

18469

\[ {}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=y \end {array}\right ] \]

system_of_ODEs

0.352

18470

\[ {}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=y \end {array}\right ] \]

system_of_ODEs

0.310

18471

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+4 y \\ y^{\prime }=-2 x+3 y \end {array}\right ] \]

system_of_ODEs

0.402

18472

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-2 y \\ y^{\prime }=5 x+2 y \end {array}\right ] \]

system_of_ODEs

0.516

18473

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+4 y \\ y^{\prime }=y-x \end {array}\right ] \]

system_of_ODEs

0.389

18474

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-3 y \\ y^{\prime }=8 x-6 y \end {array}\right ] \]

system_of_ODEs

0.411

18475

\[ {}\left [\begin {array}{c} x^{\prime }=2 x \\ y^{\prime }=3 y \end {array}\right ] \]

system_of_ODEs

0.362

18476

\[ {}\left [\begin {array}{c} x^{\prime }=-4 x-y \\ y^{\prime }=x-2 y \end {array}\right ] \]

system_of_ODEs

0.379

18477

\[ {}\left [\begin {array}{c} x^{\prime }=7 x+6 y \\ y^{\prime }=2 x+6 y \end {array}\right ] \]

system_of_ODEs

0.423

18478

\[ {}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=4 x+5 y \end {array}\right ] \]

system_of_ODEs

0.500

18479

\[ {}\left [\begin {array}{c} x^{\prime }=x+y-5 t +2 \\ y^{\prime }=4 x-2 y-8 t -8 \end {array}\right ] \]

system_of_ODEs

0.513

18480

\[ {}\left [\begin {array}{c} x^{\prime }=2 x \\ y^{\prime }=3 y \end {array}\right ] \]

system_of_ODEs

0.350

18481

\[ {}\left [\begin {array}{c} x^{\prime }=-x-2 y \\ y^{\prime }=4 x-5 y \end {array}\right ] \]

system_of_ODEs

0.501

18482

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+4 y \\ y^{\prime }=-2 x+3 y \end {array}\right ] \]

system_of_ODEs

0.400

18483

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+2 y \\ y^{\prime }=-17 x-5 y \end {array}\right ] \]

system_of_ODEs

0.492

18484

\[ {}\left [\begin {array}{c} x^{\prime }=-4 x-y \\ y^{\prime }=x-2 y \end {array}\right ] \]

system_of_ODEs

0.383

18485

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-3 y \\ y^{\prime }=8 x-6 y \end {array}\right ] \]

system_of_ODEs

0.399

18486

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-2 y \\ y^{\prime }=5 x+2 y \end {array}\right ] \]

system_of_ODEs

0.579

18487

\[ {}x^{\prime \prime }+\left (5 x^{4}-9 x^{2}\right ) x^{\prime }+x^{5} = 0 \]

[[_2nd_order, _missing_x]]

1.910

18488

\[ {}x^{\prime } = 3 t^{2}+4 t \]
i.c.

[_quadrature]

0.642

18489

\[ {}x^{\prime } = b \,{\mathrm e}^{t} \]
i.c.

[_quadrature]

0.268

18490

\[ {}x^{\prime } = \frac {1}{t^{2}+1} \]
i.c.

[_quadrature]

0.702

18491

\[ {}x^{\prime } = \frac {1}{\sqrt {t^{2}+1}} \]
i.c.

[_quadrature]

0.767

18492

\[ {}x^{\prime } = \cos \left (t \right ) \]
i.c.

[_quadrature]

0.751

18493

\[ {}x^{\prime } = \frac {\cos \left (t \right )}{\sin \left (t \right )} \]
i.c.

[_quadrature]

1.062

18494

\[ {}x^{\prime } = x^{2}-3 x+2 \]
i.c.

[_quadrature]

2.151

18495

\[ {}x^{\prime } = b \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

0.706

18496

\[ {}x^{\prime } = \left (x-1\right )^{2} \]
i.c.

[_quadrature]

1.308

18497

\[ {}x^{\prime } = \sqrt {x^{2}-1} \]
i.c.

[_quadrature]

4.562

18498

\[ {}x^{\prime } = 2 \sqrt {x} \]
i.c.

[_quadrature]

1.126

18499

\[ {}x^{\prime } = \tan \left (x\right ) \]
i.c.

[_quadrature]

2.046

18500

\[ {}3 t^{2} x-t x+\left (3 t^{3} x^{2}+t^{3} x^{4}\right ) x^{\prime } = 0 \]

[_separable]

2.211