2.2.181 Problems 18001 to 18100

Table 2.363: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

18001

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 2 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

1.669

18002

\[ {}y^{\prime \prime }+\frac {x y^{\prime }}{1-x}-\frac {y}{1-x} = x -1 \]

[[_2nd_order, _with_linear_symmetries]]

1.743

18003

\[ {}\left (x^{2}+2\right ) y^{\prime \prime \prime }-2 x y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime }-2 x y = x^{4}+12 \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.066

18004

\[ {}y^{\prime \prime \prime }+y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.065

18005

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2.168

18006

\[ {}y^{\prime \prime }+\frac {y}{x^{2} \ln \left (x \right )} = {\mathrm e}^{x} \left (\frac {2}{x}+\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.279

18007

\[ {}y^{\prime \prime }+p_{1} y^{\prime }+p_{2} y = 0 \]

[[_2nd_order, _missing_x]]

3.073

18008

\[ {}\left (2 x +1\right ) y^{\prime \prime }+\left (4 x -2\right ) y^{\prime }-8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.071

18009

\[ {}y^{\prime \prime } \sin \left (x \right )^{2}+\sin \left (x \right ) \cos \left (x \right ) y^{\prime } = y \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.914

18010

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.070

18011

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

[[_3rd_order, _missing_x]]

0.069

18012

\[ {}y^{\prime \prime \prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

0.079

18013

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

0.075

18014

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

1.105

18015

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_high_order, _missing_x]]

0.096

18016

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.411

18017

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = {\mathrm e}^{x}+{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.321

18018

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = x \,{\mathrm e}^{x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.126

18019

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = \left (x +1\right ) {\mathrm e}^{x} \]

[[_high_order, _linear, _nonhomogeneous]]

0.151

18020

\[ {}y^{\prime \prime }+4 y = x \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.030

18021

\[ {}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{-\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

32.225

18022

\[ {}y^{\prime \prime }-y = \frac {{\mathrm e}^{x}-{\mathrm e}^{-x}}{{\mathrm e}^{x}+{\mathrm e}^{-x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.890

18023

\[ {}y^{\prime \prime }-2 y = 4 x^{2} {\mathrm e}^{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.514

18024

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.877

18025

\[ {}y^{\prime \prime }+9 y = \ln \left (2 \sin \left (\frac {x}{2}\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

114.840

18026

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {n \left (n +1\right ) y}{x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.238

18027

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x \]

[[_2nd_order, _with_linear_symmetries]]

1.506

18028

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = x \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

11.989

18029

\[ {}x^{2} y^{\prime \prime }-2 y = x^{2}+\frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.087

18030

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = x^{3}+3 x \]

[[_3rd_order, _with_linear_symmetries]]

0.270

18031

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 4 \cos \left (\ln \left (x +1\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.019

18032

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}+\left (1-\frac {m^{2}}{x^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.993

18033

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y = 0 \]

[_Lienard]

1.470

18034

\[ {}y^{\prime \prime }+\frac {2 p y^{\prime }}{x}+y = 0 \]

[_Lienard]

1.046

18035

\[ {}x y^{\prime \prime }-y^{\prime }-x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.238

18036

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.822

18037

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {y \left (-8+\sqrt {x}+x \right )}{4 x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.211

18038

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=z \\ z^{\prime }=x \end {array}\right ] \]

system_of_ODEs

0.804

18039

\[ {}\left [\begin {array}{c} y^{\prime }=y+z \\ z^{\prime }=y+z+x \end {array}\right ] \]

system_of_ODEs

0.365

18040

\[ {}\left [\begin {array}{c} y^{\prime }=\frac {y^{2}}{z} \\ z^{\prime }=\frac {y}{2} \end {array}\right ] \]

system_of_ODEs

0.055

18041

\[ {}\left [\begin {array}{c} y^{\prime }=1-\frac {1}{z} \\ z^{\prime }=\frac {1}{y-x} \end {array}\right ] \]

system_of_ODEs

0.054

18042

\[ {}\left [\begin {array}{c} y^{\prime }=-z \\ z^{\prime }=y \end {array}\right ] \]
i.c.

system_of_ODEs

0.475

18043

\[ {}y^{\prime \prime } = x +y^{2} \]
i.c.

[NONE]

0.133

18044

\[ {}y^{\prime \prime }+2 y^{\prime }+y^{2} = 0 \]
i.c.

[[_2nd_order, _missing_x], [_Emden, _modified]]

1.285

18045

\[ {}\left [\begin {array}{c} y^{\prime }=\frac {z^{2}}{y} \\ z^{\prime }=\frac {y^{2}}{z} \end {array}\right ] \]

system_of_ODEs

0.056

18046

\[ {}\left [\begin {array}{c} y^{\prime }=\frac {y^{2}}{z} \\ z^{\prime }=\frac {z^{2}}{y} \end {array}\right ] \]

system_of_ODEs

0.057

18047

\[ {}\left [\begin {array}{c} x^{\prime }=y+z-x \\ y^{\prime }=x-y+z \\ z^{\prime }=x+y-z \end {array}\right ] \]

system_of_ODEs

0.345

18048

\[ {}\left [\begin {array}{c} x^{\prime }+x+y=t^{2} \\ y^{\prime }+y+z=2 t \\ z^{\prime }+z=t \end {array}\right ] \]

system_of_ODEs

0.516

18049

\[ {}\left [\begin {array}{c} x^{\prime }+5 x+y=7 \,{\mathrm e}^{t}-27 \\ -2 x+y^{\prime }+3 y=-3 \,{\mathrm e}^{t}+12 \end {array}\right ] \]

system_of_ODEs

0.786

18050

\[ {}\left [\begin {array}{c} y^{\prime \prime }+z^{\prime }-2 z={\mathrm e}^{2 x} \\ z^{\prime }+2 y^{\prime }-3 y=0 \end {array}\right ] \]

system_of_ODEs

0.055

18051

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=x+{\mathrm e}^{t}+{\mathrm e}^{-t} \end {array}\right ] \]

system_of_ODEs

0.457

18052

\[ {}\left [\begin {array}{c} y^{\prime }+\frac {2 z}{x^{2}}=1 \\ z^{\prime }+y=x \end {array}\right ] \]

system_of_ODEs

0.055

18053

\[ {}\left [\begin {array}{c} t x^{\prime }-x-3 y=t \\ t y^{\prime }-x+y=0 \end {array}\right ] \]

system_of_ODEs

0.060

18054

\[ {}\left [\begin {array}{c} t x^{\prime }+6 x-y-3 z=0 \\ t y^{\prime }+23 x-6 y-9 z=0 \\ t z^{\prime }+x+y-2 z=0 \end {array}\right ] \]

system_of_ODEs

0.066

18055

\[ {}\left [\begin {array}{c} x^{\prime }+5 x+y={\mathrm e}^{t} \\ y^{\prime }-x+3 y={\mathrm e}^{2 t} \end {array}\right ] \]

system_of_ODEs

0.487

18056

\[ {}y^{\prime } = 2 x \]

[_quadrature]

0.436

18057

\[ {}y^{\prime } x = 2 y \]

[_separable]

2.129

18058

\[ {}y y^{\prime } = {\mathrm e}^{2 x} \]

[_separable]

1.664

18059

\[ {}y^{\prime } = k y \]

[_quadrature]

0.668

18060

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

2.276

18061

\[ {}y^{\prime \prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

2.341

18062

\[ {}y^{\prime } x +y = y^{\prime } \sqrt {1-x^{2} y^{2}} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3.987

18063

\[ {}y^{\prime } x = y+x^{2}+y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.581

18064

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.254

18065

\[ {}2 x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7.674

18066

\[ {}y^{\prime } x +y = x^{4} {y^{\prime }}^{2} \]

[[_homogeneous, ‘class G‘], _rational]

1.862

18067

\[ {}y^{\prime } = \frac {y^{2}}{x y-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

37.282

18068

\[ {}\left (y \cos \left (y\right )-\sin \left (y\right )+x \right ) y^{\prime } = y \]

[[_1st_order, _with_linear_symmetries]]

1.723

18069

\[ {}1+y^{2}+y^{2} y^{\prime } = 0 \]

[_quadrature]

4.176

18070

\[ {}y^{\prime } = {\mathrm e}^{3 x}-x \]

[_quadrature]

0.500

18071

\[ {}y^{\prime } x = 1 \]

[_quadrature]

0.462

18072

\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \]

[_quadrature]

0.492

18073

\[ {}y^{\prime } = \arcsin \left (x \right ) \]

[_quadrature]

0.372

18074

\[ {}\left (x +1\right ) y^{\prime } = x \]

[_quadrature]

0.524

18075

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \]

[_quadrature]

0.538

18076

\[ {}\left (x^{3}+1\right ) y^{\prime } = x \]

[_quadrature]

0.663

18077

\[ {}\left (x^{2}+1\right ) y^{\prime } = \arctan \left (x \right ) \]

[_quadrature]

0.582

18078

\[ {}x y y^{\prime } = -1+y \]

[_separable]

1.600

18079

\[ {}x^{5} y^{\prime }+y^{5} = 0 \]

[_separable]

5.382

18080

\[ {}y^{\prime } x = \left (-2 x^{2}+1\right ) \tan \left (y\right ) \]

[_separable]

2.011

18081

\[ {}y^{\prime } = 2 x y \]

[_separable]

1.578

18082

\[ {}y^{\prime } \sin \left (y\right ) = x^{2} \]

[_separable]

1.447

18083

\[ {}y^{\prime } \sin \left (x \right ) = 1 \]

[_quadrature]

0.611

18084

\[ {}y^{\prime }+\tan \left (x \right ) y = 0 \]

[_separable]

1.755

18085

\[ {}y^{\prime }-\tan \left (x \right ) y = 0 \]

[_separable]

1.806

18086

\[ {}\left (x^{2}+1\right ) y^{\prime }+1+y^{2} = 0 \]

[_separable]

2.079

18087

\[ {}y \ln \left (y\right )-y^{\prime } x = 0 \]

[_separable]

1.789

18088

\[ {}y^{\prime } = x \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

0.691

18089

\[ {}y^{\prime } = 2 \sin \left (x \right ) \cos \left (x \right ) \]
i.c.

[_quadrature]

0.776

18090

\[ {}y^{\prime } = \ln \left (x \right ) \]
i.c.

[_quadrature]

0.414

18091

\[ {}\left (x^{2}-1\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

0.665

18092

\[ {}x \left (x^{2}-4\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

0.796

18093

\[ {}\left (x +1\right ) \left (x^{2}+1\right ) y^{\prime } = 2 x^{2}+x \]
i.c.

[_quadrature]

1.234

18094

\[ {}y^{\prime } = {\mathrm e}^{3 x -2 y} \]
i.c.

[_separable]

4.006

18095

\[ {}y^{\prime } x = 2 x^{2}+1 \]
i.c.

[_quadrature]

0.771

18096

\[ {}{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

2.430

18097

\[ {}3 \cos \left (3 x \right ) \cos \left (2 y\right )-2 \sin \left (3 x \right ) \sin \left (2 y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

4.445

18098

\[ {}y^{\prime } = {\mathrm e}^{x} \cos \left (x \right ) \]
i.c.

[_quadrature]

0.839

18099

\[ {}x y y^{\prime } = \left (x +1\right ) \left (1+y\right ) \]
i.c.

[_separable]

1.442

18100

\[ {}y^{\prime } = 2 x y+1 \]

[_linear]

1.056