2.2.162 Problems 16101 to 16200

Table 2.325: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

16101

\[ {}y+\left (y+t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.148

16102

\[ {}2 t^{2}-7 t y+5 y^{2}+t y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14.556

16103

\[ {}y+2 \sqrt {t^{2}+y^{2}}-t y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

9.286

16104

\[ {}y^{2} = \left (t y-4 t^{2}\right ) y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5.534

16105

\[ {}y-\left (3 \sqrt {t y}+t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

11.293

16106

\[ {}\left (t^{2}-y^{2}\right ) y^{\prime }+y^{2}+t y = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.362

16107

\[ {}t y y^{\prime }-t^{2} {\mathrm e}^{-\frac {y}{t}}-y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.028

16108

\[ {}y^{\prime } = \frac {1}{\frac {2 y \,{\mathrm e}^{-\frac {t}{y}}}{t}+\frac {t}{y}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.039

16109

\[ {}t \left (\ln \left (t \right )-\ln \left (y\right )\right ) y^{\prime } = y \]

[[_homogeneous, ‘class A‘], _dAlembert]

6.209

16110

\[ {}y^{\prime }+2 y = t^{2} \sqrt {y} \]
i.c.

[_Bernoulli]

1.297

16111

\[ {}y^{\prime }-2 y = t^{2} \sqrt {y} \]
i.c.

[_Bernoulli]

1.419

16112

\[ {}y^{\prime } = \frac {4 y^{2}-t^{2}}{2 t y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5.486

16113

\[ {}t +y-t y^{\prime } = 0 \]
i.c.

[_linear]

1.775

16114

\[ {}t y^{\prime }-y-\sqrt {t^{2}+y^{2}} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.278

16115

\[ {}t^{3}+y^{2} \sqrt {t^{2}+y^{2}}-t y \sqrt {t^{2}+y^{2}}\, y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

334.595

16116

\[ {}y^{3}-t^{3}-t y^{2} y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

112.735

16117

\[ {}t y^{3}-\left (t^{4}+y^{4}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

17.997

16118

\[ {}y^{4}+\left (t^{4}-t y^{3}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7.453

16119

\[ {}t -2 y+1+\left (4 t -3 y-6\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.675

16120

\[ {}5 t +2 y+1+\left (2 t +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.266

16121

\[ {}3 t -y+1-\left (6 t -2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.836

16122

\[ {}2 t +3 y+1+\left (4 t +6 y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.824

16123

\[ {}y^{\prime }-\frac {2 y}{x} = -x^{2} y \]

[_separable]

1.707

16124

\[ {}y^{\prime }+y \cot \left (x \right ) = y^{4} \]
i.c.

[_Bernoulli]

3.221

16125

\[ {}t y^{\prime }-{y^{\prime }}^{3} = y \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.451

16126

\[ {}t y^{\prime }-y-2 \left (t y^{\prime }-y\right )^{2} = y^{\prime }+1 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.675

16127

\[ {}t y^{\prime }-y-1 = {y^{\prime }}^{2}-y^{\prime } \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.456

16128

\[ {}1+y-t y^{\prime } = \ln \left (y^{\prime }\right ) \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.796

16129

\[ {}1-2 t y^{\prime }+2 y = \frac {1}{{y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.735

16130

\[ {}y = -t y^{\prime }+\frac {{y^{\prime }}^{5}}{5} \]

[_dAlembert]

0.607

16131

\[ {}y = t {y^{\prime }}^{2}+3 {y^{\prime }}^{2}-2 {y^{\prime }}^{3} \]

[_dAlembert]

10.223

16132

\[ {}y = t \left (y^{\prime }+1\right )+2 y^{\prime }+1 \]

[_linear]

1.376

16133

\[ {}y = t \left (2-y^{\prime }\right )+2 {y^{\prime }}^{2}+1 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.470

16134

\[ {}t^{{1}/{3}} y^{{2}/{3}}+t +\left (t^{{2}/{3}} y^{{1}/{3}}+y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

37.163

16135

\[ {}y^{\prime } = \frac {y^{2}-t^{2}}{t y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7.656

16136

\[ {}y \sin \left (\frac {t}{y}\right )-\left (t +t \sin \left (\frac {t}{y}\right )\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

16.721

16137

\[ {}y^{\prime } = \frac {2 t^{5}}{5 y^{2}} \]

[_separable]

2.402

16138

\[ {}\cos \left (4 x \right )-8 \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

2.757

16139

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t} \]

[_separable]

2.269

16140

\[ {}y^{\prime } = \frac {{\mathrm e}^{8 y}}{t} \]

[_separable]

1.662

16141

\[ {}y^{\prime } = \frac {{\mathrm e}^{5 t}}{y^{4}} \]

[_separable]

1.439

16142

\[ {}-\frac {1}{x^{5}}+\frac {1}{x^{3}} = \left (2 y^{4}-6 y^{9}\right ) y^{\prime } \]

[_separable]

1.714

16143

\[ {}y^{\prime } = \frac {y \,{\mathrm e}^{-2 t}}{\ln \left (y\right )} \]

[_separable]

1.411

16144

\[ {}y^{\prime } = \frac {\left (4-7 x \right ) \left (2 y-3\right )}{\left (x -1\right ) \left (2 x -5\right )} \]

[_separable]

1.928

16145

\[ {}y^{\prime }+3 y = -10 \sin \left (t \right ) \]

[[_linear, ‘class A‘]]

1.351

16146

\[ {}3 t +\left (t -4 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

5.308

16147

\[ {}y-t +\left (y+t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.621

16148

\[ {}y-x +y^{\prime } = 0 \]

[[_linear, ‘class A‘]]

1.161

16149

\[ {}y^{2}+\left (t y+t^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.101

16150

\[ {}r^{\prime } = \frac {r^{2}+t^{2}}{r t} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5.619

16151

\[ {}x^{\prime } = \frac {5 t x}{t^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

25.845

16152

\[ {}t^{2}-y+\left (y-t \right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.124

16153

\[ {}t^{2} y+\sin \left (t \right )+\left (\frac {t^{3}}{3}-\cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

4.108

16154

\[ {}\tan \left (y\right )-t +\left (t \sec \left (y\right )^{2}+1\right ) y^{\prime } = 0 \]

[_exact]

3.750

16155

\[ {}t \ln \left (y\right )+\left (\frac {t^{2}}{2 y}+1\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.306

16156

\[ {}y^{\prime }+y = 5 \]

[_quadrature]

1.160

16157

\[ {}y^{\prime }+t y = t \]

[_separable]

1.661

16158

\[ {}x^{\prime }+\frac {x}{y} = y^{2} \]

[_linear]

1.526

16159

\[ {}t r^{\prime }+r = t \cos \left (t \right ) \]

[_linear]

1.312

16160

\[ {}y^{\prime }-y = t y^{3} \]

[_Bernoulli]

2.318

16161

\[ {}y^{\prime }+y = \frac {{\mathrm e}^{t}}{y^{2}} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

2.102

16162

\[ {}y = t y^{\prime }+3 {y^{\prime }}^{4} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.139

16163

\[ {}y-t y^{\prime } = 2 y^{2} \ln \left (t \right ) \]

[[_homogeneous, ‘class D‘], _Bernoulli]

2.603

16164

\[ {}y-t y^{\prime } = -2 {y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.453

16165

\[ {}y-t y^{\prime } = -4 {y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.320

16166

\[ {}2 x -y-2+\left (2 y-x \right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

10.810

16167

\[ {}\cos \left (t -y\right )+\left (1-\cos \left (t -y\right )\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

123.088

16168

\[ {}{\mathrm e}^{t y} y-2 t +t \,{\mathrm e}^{t y} y^{\prime } = 0 \]
i.c.

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.758

16169

\[ {}\sin \left (y\right )-y \cos \left (t \right )+\left (t \cos \left (y\right )-\sin \left (t \right )\right ) y^{\prime } = 0 \]
i.c.

[_exact]

8.680

16170

\[ {}y^{2}+\left (2 t y-2 \cos \left (y\right ) \sin \left (y\right )\right ) y^{\prime } = 0 \]
i.c.

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.028

16171

\[ {}\frac {y}{t}+\ln \left (y\right )+\left (\frac {t}{y}+\ln \left (t \right )\right ) y^{\prime } = 0 \]
i.c.

[_exact]

2.011

16172

\[ {}y^{\prime } = y^{2}-x \]
i.c.

[[_Riccati, _special]]

17.055

16173

\[ {}y^{\prime } = \sqrt {x -y} \]
i.c.

[[_homogeneous, ‘class C‘], _dAlembert]

2.152

16174

\[ {}y^{\prime } = t y^{3} \]
i.c.

[_separable]

3.522

16175

\[ {}y^{\prime } = \frac {t}{y^{3}} \]
i.c.

[_separable]

5.102

16176

\[ {}y^{\prime } = -\frac {y}{t -2} \]
i.c.

[_separable]

2.416

16177

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

2.189

16178

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.179

16179

\[ {}2 t^{2} y^{\prime \prime }-3 t y^{\prime }-3 y = 0 \]

[[_Emden, _Fowler]]

1.047

16180

\[ {}y^{\prime \prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

2.220

16181

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.650

16182

\[ {}y^{\prime \prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.069

16183

\[ {}3 t^{2} y^{\prime \prime }-5 t y^{\prime }-3 y = 0 \]
i.c.

[[_Emden, _Fowler]]

1.830

16184

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }-7 y = 0 \]
i.c.

[[_Emden, _Fowler]]

1.709

16185

\[ {}y^{\prime \prime }+y = 2 \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.697

16186

\[ {}y^{\prime \prime }+10 y^{\prime }+24 y = 0 \]

[[_2nd_order, _missing_x]]

1.065

16187

\[ {}y^{\prime \prime }+16 y = 0 \]

[[_2nd_order, _missing_x]]

2.276

16188

\[ {}y^{\prime \prime }+6 y^{\prime }+18 y = 0 \]

[[_2nd_order, _missing_x]]

1.915

16189

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.226

16190

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

0.471

16191

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 0 \]

[[_2nd_order, _missing_x]]

0.475

16192

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.552

16193

\[ {}y^{\prime \prime }+10 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

0.459

16194

\[ {}y^{\prime \prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.651

16195

\[ {}y^{\prime \prime }+49 y = 0 \]

[[_2nd_order, _missing_x]]

0.520

16196

\[ {}t^{2} y^{\prime \prime }+4 t y^{\prime }-4 y = 0 \]

[[_Emden, _Fowler]]

0.305

16197

\[ {}t^{2} y^{\prime \prime }+6 t y^{\prime }+6 y = 0 \]

[[_Emden, _Fowler]]

0.305

16198

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.354

16199

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.309

16200

\[ {}a y^{\prime \prime }+b y^{\prime }+c y = 0 \]

[[_2nd_order, _missing_x]]

2.692