2.2.148 Problems 14701 to 14800

Table 2.297: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

14701

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

1.586

14702

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

1.609

14703

\[ {}w^{\prime } = w \cos \left (w\right ) \]
i.c.

[_quadrature]

1.575

14704

\[ {}w^{\prime } = \left (1-w\right ) \sin \left (w\right ) \]

[_quadrature]

4.287

14705

\[ {}y^{\prime } = \frac {1}{y-2} \]

[_quadrature]

1.154

14706

\[ {}v^{\prime } = -v^{2}-2 v-2 \]

[_quadrature]

1.234

14707

\[ {}w^{\prime } = 3 w^{3}-12 w^{2} \]

[_quadrature]

3.669

14708

\[ {}y^{\prime } = 1+\cos \left (y\right ) \]

[_quadrature]

1.335

14709

\[ {}y^{\prime } = \tan \left (y\right ) \]

[_quadrature]

1.260

14710

\[ {}y^{\prime } = y \ln \left ({| y|}\right ) \]

[_quadrature]

1.545

14711

\[ {}w^{\prime } = \left (w^{2}-2\right ) \arctan \left (w\right ) \]

[_quadrature]

1.903

14712

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

1.711

14713

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

1.590

14714

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

1.705

14715

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

1.718

14716

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

1.706

14717

\[ {}y^{\prime } = y^{2}-4 y+2 \]
i.c.

[_quadrature]

1.727

14718

\[ {}y^{\prime } = y \cos \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

1.420

14719

\[ {}y^{\prime } = y-y^{2} \]

[_quadrature]

1.910

14720

\[ {}y^{\prime } = y \sin \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

1.428

14721

\[ {}y^{\prime } = y^{3}-y^{2} \]

[_quadrature]

3.650

14722

\[ {}y^{\prime } = \cos \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

2.237

14723

\[ {}y^{\prime } = y^{2}-y \]

[_quadrature]

1.666

14724

\[ {}y^{\prime } = y \sin \left (\frac {\pi y}{2}\right ) \]

[_quadrature]

1.436

14725

\[ {}y^{\prime } = y^{2}-y^{3} \]

[_quadrature]

3.627

14726

\[ {}y^{\prime } = -4 y+9 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

1.369

14727

\[ {}y^{\prime } = -4 y+3 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

1.285

14728

\[ {}y^{\prime } = -3 y+4 \cos \left (2 t \right ) \]

[[_linear, ‘class A‘]]

1.401

14729

\[ {}y^{\prime } = 2 y+\sin \left (2 t \right ) \]

[[_linear, ‘class A‘]]

1.388

14730

\[ {}y^{\prime } = 3 y-4 \,{\mathrm e}^{3 t} \]

[[_linear, ‘class A‘]]

1.222

14731

\[ {}y^{\prime } = \frac {y}{2}+4 \,{\mathrm e}^{\frac {t}{2}} \]

[[_linear, ‘class A‘]]

1.224

14732

\[ {}y^{\prime }+2 y = {\mathrm e}^{\frac {t}{3}} \]
i.c.

[[_linear, ‘class A‘]]

1.592

14733

\[ {}y^{\prime }-2 y = 3 \,{\mathrm e}^{-2 t} \]
i.c.

[[_linear, ‘class A‘]]

1.609

14734

\[ {}y^{\prime }+y = \cos \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.670

14735

\[ {}y^{\prime }+3 y = \cos \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.708

14736

\[ {}y^{\prime }-2 y = 7 \,{\mathrm e}^{2 t} \]
i.c.

[[_linear, ‘class A‘]]

1.483

14737

\[ {}y^{\prime }+2 y = 3 t^{2}+2 t -1 \]

[[_linear, ‘class A‘]]

1.297

14738

\[ {}y^{\prime }+2 y = t^{2}+2 t +1+{\mathrm e}^{4 t} \]

[[_linear, ‘class A‘]]

1.996

14739

\[ {}y^{\prime }+y = t^{3}+\sin \left (3 t \right ) \]

[[_linear, ‘class A‘]]

1.734

14740

\[ {}y^{\prime }-3 y = 2 t -{\mathrm e}^{4 t} \]

[[_linear, ‘class A‘]]

1.364

14741

\[ {}y^{\prime }+y = \cos \left (2 t \right )+3 \sin \left (2 t \right )+{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

1.990

14742

\[ {}y^{\prime } = -\frac {y}{t}+2 \]

[_linear]

2.359

14743

\[ {}y^{\prime } = \frac {3 y}{t}+t^{5} \]

[_linear]

1.569

14744

\[ {}y^{\prime } = -\frac {y}{1+t}+t^{2} \]

[_linear]

1.728

14745

\[ {}y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}} \]

[_linear]

1.594

14746

\[ {}y^{\prime }-\frac {2 t y}{t^{2}+1} = 3 \]

[_linear]

1.663

14747

\[ {}y^{\prime }-\frac {2 y}{t} = t^{3} {\mathrm e}^{t} \]

[_linear]

1.565

14748

\[ {}y^{\prime } = -\frac {y}{1+t}+2 \]
i.c.

[_linear]

2.060

14749

\[ {}y^{\prime } = \frac {y}{1+t}+4 t^{2}+4 t \]
i.c.

[_linear]

1.514

14750

\[ {}y^{\prime } = -\frac {y}{t}+2 \]
i.c.

[_linear]

3.009

14751

\[ {}y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}} \]
i.c.

[_linear]

1.916

14752

\[ {}y^{\prime }-\frac {2 y}{t} = 2 t^{2} \]
i.c.

[_linear]

1.937

14753

\[ {}y^{\prime }-\frac {3 y}{t} = 2 t^{3} {\mathrm e}^{2 t} \]
i.c.

[_linear]

2.521

14754

\[ {}y^{\prime } = \sin \left (t \right ) y+4 \]

[_linear]

1.840

14755

\[ {}y^{\prime } = t^{2} y+4 \]

[_linear]

1.649

14756

\[ {}y^{\prime } = \frac {y}{t^{2}}+4 \cos \left (t \right ) \]

[_linear]

2.035

14757

\[ {}y^{\prime } = y+4 \cos \left (t^{2}\right ) \]

[[_linear, ‘class A‘]]

1.620

14758

\[ {}y^{\prime } = -y \,{\mathrm e}^{-t^{2}}+\cos \left (t \right ) \]

[_linear]

2.690

14759

\[ {}y^{\prime } = \frac {y}{\sqrt {t^{3}-3}}+t \]

[_linear]

21.973

14760

\[ {}y^{\prime } = a t y+4 \,{\mathrm e}^{-t^{2}} \]

[_linear]

1.115

14761

\[ {}y^{\prime } = t^{r} y+4 \]

[_linear]

1.263

14762

\[ {}v^{\prime }+\frac {2 v}{5} = 3 \cos \left (2 t \right ) \]

[[_linear, ‘class A‘]]

1.558

14763

\[ {}y^{\prime } = -2 t y+4 \,{\mathrm e}^{-t^{2}} \]

[_linear]

1.600

14764

\[ {}y^{\prime }+2 y = 3 \,{\mathrm e}^{-2 t} \]

[[_linear, ‘class A‘]]

1.206

14765

\[ {}y^{\prime } = 3 y \]

[_quadrature]

1.346

14766

\[ {}y^{\prime } = t^{2} \left (t^{2}+1\right ) \]

[_quadrature]

0.476

14767

\[ {}y^{\prime } = -\sin \left (y\right )^{5} \]

[_quadrature]

1.991

14768

\[ {}y^{\prime } = \frac {\left (t^{2}-4\right ) \left (y+1\right ) {\mathrm e}^{y}}{\left (t -1\right ) \left (3-y\right )} \]

[_separable]

2.328

14769

\[ {}y^{\prime } = \sin \left (y\right )^{2} \]

[_quadrature]

1.269

14770

\[ {}y^{\prime } = \left (y-3\right ) \left (\sin \left (y\right ) \sin \left (t \right )+\cos \left (t \right )+1\right ) \]
i.c.

[‘x=_G(y,y’)‘]

10.391

14771

\[ {}y^{\prime } = y+{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

1.261

14772

\[ {}y^{\prime } = 3-2 y \]

[_quadrature]

1.270

14773

\[ {}y^{\prime } = t y \]

[_separable]

1.579

14774

\[ {}y^{\prime } = 3 y+{\mathrm e}^{7 t} \]

[[_linear, ‘class A‘]]

1.288

14775

\[ {}y^{\prime } = \frac {t y}{t^{2}+1} \]

[_separable]

1.691

14776

\[ {}y^{\prime } = -5 y+\sin \left (3 t \right ) \]

[[_linear, ‘class A‘]]

1.430

14777

\[ {}y^{\prime } = t +\frac {2 y}{1+t} \]

[_linear]

1.249

14778

\[ {}y^{\prime } = 3+y^{2} \]

[_quadrature]

1.244

14779

\[ {}y^{\prime } = 2 y-y^{2} \]

[_quadrature]

2.050

14780

\[ {}y^{\prime } = -3 y+{\mathrm e}^{-2 t}+t^{2} \]

[[_linear, ‘class A‘]]

1.855

14781

\[ {}x^{\prime } = -t x \]
i.c.

[_separable]

2.129

14782

\[ {}y^{\prime } = 2 y+\cos \left (4 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.802

14783

\[ {}y^{\prime } = 3 y+2 \,{\mathrm e}^{3 t} \]
i.c.

[[_linear, ‘class A‘]]

1.512

14784

\[ {}y^{\prime } = t^{2} y^{3}+y^{3} \]
i.c.

[_separable]

3.339

14785

\[ {}y^{\prime }+5 y = 3 \,{\mathrm e}^{-5 t} \]
i.c.

[[_linear, ‘class A‘]]

1.501

14786

\[ {}y^{\prime } = 2 t y+3 t \,{\mathrm e}^{t^{2}} \]
i.c.

[_linear]

2.671

14787

\[ {}y^{\prime } = \frac {\left (1+t \right )^{2}}{\left (y+1\right )^{2}} \]
i.c.

[_separable]

4.348

14788

\[ {}y^{\prime } = 2 t y^{2}+3 t^{2} y^{2} \]
i.c.

[_separable]

2.102

14789

\[ {}y^{\prime } = 1-y^{2} \]
i.c.

[_quadrature]

1.490

14790

\[ {}y^{\prime } = \frac {t^{2}}{y+t^{3} y} \]
i.c.

[_separable]

2.737

14791

\[ {}y^{\prime } = y^{2}-2 y+1 \]
i.c.

[_quadrature]

1.395

14792

\[ {}y^{\prime } = \left (y-2\right ) \left (y+1-\cos \left (t \right )\right ) \]

[_Riccati]

4.137

14793

\[ {}y^{\prime } = \left (y-1\right ) \left (y-2\right ) \left (y-{\mathrm e}^{\frac {t}{2}}\right ) \]

[_Abel]

1.869

14794

\[ {}y^{\prime } = t^{2} y+1+y+t^{2} \]

[_separable]

1.579

14795

\[ {}y^{\prime } = \frac {2 y+1}{t} \]

[_separable]

2.091

14796

\[ {}y^{\prime } = 3-y^{2} \]
i.c.

[_quadrature]

1.475

14797

\[ {}\left [\begin {array}{c} x^{\prime }=x-y \\ y^{\prime }=x-y \end {array}\right ] \]

system_of_ODEs

0.330

14798

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-y \\ y^{\prime }=0 \end {array}\right ] \]

system_of_ODEs

0.366

14799

\[ {}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=2 x+y \end {array}\right ] \]

system_of_ODEs

0.355

14800

\[ {}\left [\begin {array}{c} x^{\prime }=-x+2 y \\ y^{\prime }=2 x-y \end {array}\right ] \]

system_of_ODEs

0.400