2.2.146 Problems 14501 to 14600

Table 2.293: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

14501

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime } = 0 \]

[[_high_order, _missing_x]]

0.083

14502

\[ {}36 y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }-11 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_high_order, _missing_x]]

0.077

14503

\[ {}y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_high_order, _missing_x]]

0.082

14504

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+35 y^{\prime \prime }+16 y^{\prime }-52 y = 0 \]

[[_high_order, _missing_x]]

0.086

14505

\[ {}y^{\left (8\right )}+8 y^{\prime \prime \prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

0.106

14506

\[ {}y^{\prime \prime }+\alpha y = 0 \]

[[_2nd_order, _missing_x]]

2.971

14507

\[ {}y^{\prime \prime \prime }+\left (-3-4 i\right ) y^{\prime \prime }+\left (-4+12 i\right ) y^{\prime }+12 y = 0 \]

[[_3rd_order, _missing_x]]

0.092

14508

\[ {}y^{\prime \prime \prime \prime }+\left (-3-i\right ) y^{\prime \prime \prime }+\left (4+3 i\right ) y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.085

14509

\[ {}y^{\prime }-i y = 0 \]
i.c.

[_quadrature]

1.072

14510

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-12 y^{\prime }+4 y = 2 \,{\mathrm e}^{x}-4 \,{\mathrm e}^{2 x} \]

[[_high_order, _linear, _nonhomogeneous]]

0.169

14511

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 24 x^{2}-6 x +14+32 \cos \left (2 x \right ) \]

[[_high_order, _missing_y]]

0.591

14512

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3+\cos \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.173

14513

\[ {}y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = 6 x -20-120 x^{2} {\mathrm e}^{x} \]

[[_high_order, _missing_y]]

0.167

14514

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+21 y^{\prime }-26 y = 36 \,{\mathrm e}^{2 x} \sin \left (3 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.504

14515

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = \left (2 x^{2}+4 x +8\right ) \cos \left (x \right )+\left (6 x^{2}+8 x +12\right ) \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.256

14516

\[ {}y^{\left (6\right )}-12 y^{\left (5\right )}+63 y^{\prime \prime \prime \prime }-18 y^{\prime \prime \prime }+315 y^{\prime \prime }-300 y^{\prime }+125 y = {\mathrm e}^{x} \left (48 \cos \left (x \right )+96 \sin \left (x \right )\right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.255

14517

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.145

14518

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime }-y = 0 \]
i.c.

[[_high_order, _missing_x]]

0.157

14519

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 2 \,{\mathrm e}^{x} \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.138

14520

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3 x +4 \]
i.c.

[[_high_order, _with_linear_symmetries]]

0.182

14521

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

0.265

14522

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

0.210

14523

\[ {}y^{\prime }+2 y = 4 \]

[_quadrature]

0.288

14524

\[ {}y^{\prime \prime }-9 y = 2 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.227

14525

\[ {}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.230

14526

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x \,{\mathrm e}^{x}-3 x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.234

14527

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x \,{\mathrm e}^{x}-3 x^{2} \]

[[_high_order, _missing_y]]

0.250

14528

\[ {}y^{\prime } = {\mathrm e}^{x} \]
i.c.

[_quadrature]

0.369

14529

\[ {}y^{\prime }-y = 2 \,{\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

0.388

14530

\[ {}y^{\prime \prime }-9 y = x +2 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.280

14531

\[ {}y^{\prime \prime }+9 y = x +2 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.326

14532

\[ {}y^{\prime \prime }-y^{\prime }+6 y = -2 \sin \left (3 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.546

14533

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = -x^{2}+1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.293

14534

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x +\cos \left (x \right ) \]
i.c.

[[_3rd_order, _missing_y]]

0.446

14535

\[ {}y^{\prime }-2 y = 6 \]
i.c.

[_quadrature]

0.401

14536

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

0.403

14537

\[ {}y^{\prime \prime }+9 y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

0.268

14538

\[ {}y^{\prime \prime }+9 y = 18 \,{\mathrm e}^{3 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.306

14539

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.240

14540

\[ {}y^{\prime \prime }-y^{\prime }-2 y = x^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.272

14541

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.299

14542

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.423

14543

\[ {}y^{\prime }+2 y = \left \{\begin {array}{cc} 2 & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.598

14544

\[ {}y^{\prime \prime }-y^{\prime }-2 y = \left \{\begin {array}{cc} 1 & 2\le x <4 \\ 0 & \operatorname {otherwise} \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.492

14545

\[ {}y^{\prime \prime }-2 y^{\prime } = \left \{\begin {array}{cc} 0 & 0\le x <1 \\ \left (x -1\right )^{2} & 1\le x \end {array}\right . \]
i.c.

[[_2nd_order, _missing_y]]

0.550

14546

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \left \{\begin {array}{cc} 0 & 0\le x <1 \\ x^{2}-2 x +3 & 1\le x \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.620

14547

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 0 & 0\le x <\pi \\ -\sin \left (3 x \right ) & \pi \le x \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.118

14548

\[ {}y^{\prime \prime }-4 y = \left \{\begin {array}{cc} x & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.740

14549

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = \left \{\begin {array}{cc} x & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.689

14550

\[ {}y^{\prime }+3 y = \delta \left (x -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.538

14551

\[ {}y^{\prime }-3 y = \delta \left (x -1\right )+2 \operatorname {Heaviside}\left (x -2\right ) \]
i.c.

[[_linear, ‘class A‘]]

0.639

14552

\[ {}y^{\prime \prime }+9 y = \delta \left (x -\pi \right )+\delta \left (x -3 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.565

14553

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \delta \left (x -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.440

14554

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = \cos \left (x \right )+2 \delta \left (x -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.079

14555

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right ) \delta \left (x -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.371

14556

\[ {}y^{\prime \prime }+a^{2} y = \delta \left (x -\pi \right ) f \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.406

14557

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{1}-3 y_{2} \\ y_{2}^{\prime }=y_{1}-2 y_{2} \end {array}\right ] \]

system_of_ODEs

0.444

14558

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{1}-2 y_{2} \\ y_{2}^{\prime }=y_{1}+3 y_{2} \end {array}\right ] \]

system_of_ODEs

0.497

14559

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{1}+2 y_{2}+x -1 \\ y_{2}^{\prime }=3 y_{1}+2 y_{2}-5 x -2 \end {array}\right ] \]
i.c.

system_of_ODEs

0.587

14560

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=\frac {2 y_{1}}{x}-\frac {y_{2}}{x^{2}}-3+\frac {1}{x}-\frac {1}{x^{2}} \\ y_{2}^{\prime }=2 y_{1}+1-6 x \end {array}\right ] \]
i.c.

system_of_ODEs

0.100

14561

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=\frac {5 y_{1}}{x}+\frac {4 y_{2}}{x}-2 x \\ y_{2}^{\prime }=-\frac {6 y_{1}}{x}-\frac {5 y_{2}}{x}+5 x \end {array}\right ] \]
i.c.

system_of_ODEs

0.062

14562

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=3 y_{1}-2 y_{2} \\ y_{2}^{\prime }=y_{2}-y_{1} \end {array}\right ] \]
i.c.

system_of_ODEs

0.741

14563

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=\sin \left (x \right ) y_{1}+\sqrt {x}\, y_{2}+\ln \left (x \right ) \\ y_{2}^{\prime }=\tan \left (x \right ) y_{1}-{\mathrm e}^{x} y_{2}+1 \end {array}\right ] \]
i.c.

system_of_ODEs

0.065

14564

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=\sin \left (x \right ) y_{1}+\sqrt {x}\, y_{2}+\ln \left (x \right ) \\ y_{2}^{\prime }=\tan \left (x \right ) y_{1}-{\mathrm e}^{x} y_{2}+1 \end {array}\right ] \]
i.c.

system_of_ODEs

0.064

14565

\[ {}\left [\begin {array}{c} y_{1}^{\prime }={\mathrm e}^{-x} y_{1}-\sqrt {x +1}\, y_{2}+x^{2} \\ y_{2}^{\prime }=\frac {y_{1}}{\left (x -2\right )^{2}} \end {array}\right ] \]
i.c.

system_of_ODEs

0.064

14566

\[ {}\left [\begin {array}{c} y_{1}^{\prime }={\mathrm e}^{-x} y_{1}-\sqrt {x +1}\, y_{2}+x^{2} \\ y_{2}^{\prime }=\frac {y_{1}}{\left (x -2\right )^{2}} \end {array}\right ] \]
i.c.

system_of_ODEs

0.063

14567

\(\left [\begin {array}{cc} -2 & -4 \\ 1 & 3 \end {array}\right ]\)

Eigenvectors

0.142

14568

\(\left [\begin {array}{cc} -3 & -1 \\ 2 & -1 \end {array}\right ]\)

Eigenvectors

0.188

14569

\(\left [\begin {array}{ccc} 1 & 0 & 1 \\ 0 & 1 & -1 \\ -2 & 0 & -1 \end {array}\right ]\)

Eigenvectors

0.278

14570

\(\left [\begin {array}{ccc} 3 & 1 & -1 \\ 1 & 3 & -1 \\ 3 & 3 & -1 \end {array}\right ]\)

Eigenvectors

0.185

14571

\(\left [\begin {array}{ccc} 7 & -1 & 6 \\ -10 & 4 & -12 \\ -2 & 1 & -1 \end {array}\right ]\)

Eigenvectors

0.242

14572

\(\left [\begin {array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end {array}\right ]\)

Eigenvectors

0.233

14573

\(\left [\begin {array}{cccc} 1 & 3 & 5 & 7 \\ 2 & 6 & 10 & 14 \\ 3 & 9 & 15 & 21 \\ 6 & 18 & 30 & 42 \end {array}\right ]\)

Eigenvectors

0.257

14574

\(\left [\begin {array}{ccccc} 1 & 3 & 5 & 2 & 4 \\ 5 & 2 & 4 & 1 & 3 \\ 4 & 1 & 3 & 5 & 2 \\ 3 & 5 & 2 & 4 & 1 \\ 2 & 4 & 1 & 3 & 5 \end {array}\right ]\)

Eigenvectors

4.451

14575

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{1}-3 y_{2}+5 \,{\mathrm e}^{x} \\ y_{2}^{\prime }=y_{1}+4 y_{2}-2 \,{\mathrm e}^{-x} \end {array}\right ] \]

system_of_ODEs

1.220

14576

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{2}-2 y_{1}+\sin \left (2 x \right ) \\ y_{2}^{\prime }=-3 y_{1}+y_{2}-2 \cos \left (3 x \right ) \end {array}\right ] \]

system_of_ODEs

2.564

14577

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{2} \\ y_{2}^{\prime }=3 y_{1} \\ y_{3}^{\prime }=2 y_{3}-y_{1} \end {array}\right ] \]

system_of_ODEs

0.594

14578

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{1} x -x^{2} y_{2}+4 x \\ y_{2}^{\prime }={\mathrm e}^{x} y_{1}+3 \,{\mathrm e}^{-x} y_{2}-\cos \left (3 x \right ) \end {array}\right ] \]

system_of_ODEs

0.064

14579

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{1}-3 y_{2} \\ y_{2}^{\prime }=y_{1}-2 y_{2} \end {array}\right ] \]

system_of_ODEs

0.412

14580

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{1}-3 y_{2}+4 x -2 \\ y_{2}^{\prime }=y_{1}-2 y_{2}+3 x \end {array}\right ] \]

system_of_ODEs

0.473

14581

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=\frac {5 y_{1}}{x}+\frac {4 y_{2}}{x} \\ y_{2}^{\prime }=-\frac {6 y_{1}}{x}-\frac {5 y_{2}}{x} \end {array}\right ] \]

system_of_ODEs

0.063

14582

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=\frac {5 y_{1}}{x}+\frac {4 y_{2}}{x}-2 x \\ y_{2}^{\prime }=-\frac {6 y_{1}}{x}-\frac {5 y_{2}}{x}+5 x \end {array}\right ] \]

system_of_ODEs

0.062

14583

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{1}+y_{2}-2 y_{3} \\ y_{2}^{\prime }=3 y_{2}-2 y_{3} \\ y_{3}^{\prime }=3 y_{1}+y_{2}-3 y_{3} \end {array}\right ] \]

system_of_ODEs

0.464

14584

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=5 y_{1}-5 y_{2}-5 y_{3} \\ y_{2}^{\prime }=-y_{1}+4 y_{2}+2 y_{3} \\ y_{3}^{\prime }=3 y_{1}-5 y_{2}-3 y_{3} \end {array}\right ] \]

system_of_ODEs

0.602

14585

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=4 y_{1}+6 y_{2}+6 y_{3} \\ y_{2}^{\prime }=y_{1}+3 y_{2}+2 y_{3} \\ y_{3}^{\prime }=-y_{1}-4 y_{2}-3 y_{3} \end {array}\right ] \]

system_of_ODEs

0.481

14586

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{1}+2 y_{2}-3 y_{3} \\ y_{2}^{\prime }=-3 y_{1}+4 y_{2}-2 y_{3} \\ y_{3}^{\prime }=2 y_{1}+y_{3} \end {array}\right ] \]

system_of_ODEs

0.743

14587

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=-2 y_{1}-y_{2}+y_{3} \\ y_{2}^{\prime }=-y_{1}-2 y_{2}-y_{3} \\ y_{3}^{\prime }=y_{1}-y_{2}-2 y_{3} \end {array}\right ] \]

system_of_ODEs

0.336

14588

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{1}+y_{2}+2 y_{3} \\ y_{2}^{\prime }=y_{1}+y_{2}+2 y_{3} \\ y_{3}^{\prime }=2 y_{1}+2 y_{2}+4 y_{3} \end {array}\right ] \]

system_of_ODEs

0.367

14589

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=2 y_{1}+y_{2} \\ y_{2}^{\prime }=-y_{1}+2 y_{2} \\ y_{3}^{\prime }=3 y_{3}-4 y_{4} \\ y_{4}^{\prime }=4 y_{3}+3 y_{4} \end {array}\right ] \]

system_of_ODEs

0.825

14590

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{2} \\ y_{2}^{\prime }=-3 y_{1}+2 y_{3} \\ y_{3}^{\prime }=y_{4} \\ y_{4}^{\prime }=2 y_{1}-5 y_{3} \end {array}\right ] \]

system_of_ODEs

4.462

14591

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=3 y_{1}+2 y_{2} \\ y_{2}^{\prime }=3 y_{2}-2 y_{1} \\ y_{3}^{\prime }=y_{3} \\ y_{4}^{\prime }=2 y_{4} \end {array}\right ] \]

system_of_ODEs

0.596

14592

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{2}+y_{4} \\ y_{2}^{\prime }=y_{1}-y_{3} \\ y_{3}^{\prime }=y_{4} \\ y_{4}^{\prime }=y_{3} \end {array}\right ] \]

system_of_ODEs

0.458

14593

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x+3 y \\ y^{\prime }=-x+2 y \end {array}\right ] \]

system_of_ODEs

0.395

14594

\[ {}\left [\begin {array}{c} x^{\prime }=-x+2 y \\ y^{\prime }=-2 x+3 y \end {array}\right ] \]

system_of_ODEs

0.380

14595

\[ {}\left [\begin {array}{c} x^{\prime }=-x-2 y \\ y^{\prime }=2 x-3 y \end {array}\right ] \]

system_of_ODEs

0.683

14596

\[ {}\left [\begin {array}{c} x^{\prime }=-x-2 y \\ y^{\prime }=5 x+y \end {array}\right ] \]

system_of_ODEs

0.528

14597

\[ {}\left [\begin {array}{c} x^{\prime }=-x+2 y \\ y^{\prime }=-2 x-y \end {array}\right ] \]

system_of_ODEs

0.453

14598

\[ {}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=2 x+y \end {array}\right ] \]

system_of_ODEs

0.454

14599

\[ {}\left [\begin {array}{c} x^{\prime }=-5 x-y+2 \\ y^{\prime }=3 x-y-3 \end {array}\right ] \]

system_of_ODEs

0.620

14600

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-2 y-6 \\ y^{\prime }=4 x-y+2 \end {array}\right ] \]

system_of_ODEs

0.894