2.2.144 Problems 14301 to 14400

Table 2.289: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

14301

\[ {}\left [\begin {array}{c} x^{\prime }=-y \\ y^{\prime }=2 x-4 y \end {array}\right ] \]

system_of_ODEs

0.596

14302

\[ {}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=y \end {array}\right ] \]

system_of_ODEs

0.317

14303

\[ {}\left [\begin {array}{c} x^{\prime }=0 \\ y^{\prime }=x \end {array}\right ] \]

system_of_ODEs

0.314

14304

\[ {}x^{\prime \prime }+x-x^{3} = 0 \]

[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]]

2.332

14305

\[ {}x^{\prime \prime }+x+x^{3} = 0 \]

[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]]

2.670

14306

\[ {}x^{\prime \prime }+x^{\prime }+x-x^{3} = 0 \]

[[_2nd_order, _missing_x]]

1.733

14307

\[ {}x^{\prime \prime }+x^{\prime }+x+x^{3} = 0 \]

[[_2nd_order, _missing_x]]

1.728

14308

\[ {}x^{\prime \prime } = \left (2 \cos \left (x\right )-1\right ) \sin \left (x\right ) \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.456

14309

\[ {}\left [\begin {array}{c} x^{\prime }=x-5 y \\ y^{\prime }=x-y \end {array}\right ] \]

system_of_ODEs

0.468

14310

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.231

14311

\[ {}-y+y^{\prime } x = 0 \]

[_separable]

1.622

14312

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.195

14313

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

1.058

14314

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.846

14315

\[ {}y^{\prime }+\frac {1}{2 y} = 0 \]

[_quadrature]

1.652

14316

\[ {}y^{\prime }-\frac {y}{x} = 1 \]

[_linear]

1.490

14317

\[ {}y^{\prime }-2 \sqrt {{| y|}} = 0 \]

[_quadrature]

1.516

14318

\[ {}x^{2} y^{\prime }+2 x y = 0 \]

[_separable]

2.189

14319

\[ {}y^{\prime }-y^{2} = 1 \]

[_quadrature]

1.196

14320

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_Emden, _Fowler]]

1.137

14321

\[ {}y^{\prime } x -\sin \left (x \right ) = 0 \]

[_quadrature]

0.542

14322

\[ {}y^{\prime }+3 y = 0 \]

[_quadrature]

1.359

14323

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 0 \]

[[_2nd_order, _missing_x]]

1.084

14324

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.168

14325

\[ {}y^{\prime \prime \prime }-7 y^{\prime \prime }+12 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.069

14326

\[ {}2 y^{\prime } x -y = 0 \]

[_separable]

2.135

14327

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

0.734

14328

\[ {}x^{2} y^{\prime \prime }+6 y^{\prime } x +4 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.263

14329

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

1.191

14330

\[ {}{y^{\prime }}^{2}-4 y = 0 \]

[_quadrature]

0.550

14331

\[ {}{y^{\prime }}^{2}-9 x y = 0 \]

[[_homogeneous, ‘class G‘]]

0.521

14332

\[ {}{y^{\prime }}^{2} = x^{6} \]

[_quadrature]

0.839

14333

\[ {}y^{\prime }-2 x y = 0 \]

[_separable]

1.574

14334

\[ {}y^{\prime }+y = x^{2}+2 x -1 \]

[[_linear, ‘class A‘]]

1.268

14335

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

1.076

14336

\[ {}y^{\prime } = x \sqrt {y} \]

[_separable]

2.674

14337

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

2.190

14338

\[ {}y^{\prime } = 3 y^{{2}/{3}} \]

[_quadrature]

1.539

14339

\[ {}x \ln \left (x \right ) y^{\prime }-\left (1+\ln \left (x \right )\right ) y = 0 \]

[_separable]

1.753

14340

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.646

14341

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.684

14342

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.160

14343

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.169

14344

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.122

14345

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.947

14346

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.036

14347

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.954

14348

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.941

14349

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.412

14350

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.155

14351

\[ {}y^{\prime } = 1-x \]

[_quadrature]

0.439

14352

\[ {}y^{\prime } = x -1 \]

[_quadrature]

0.444

14353

\[ {}y^{\prime } = 1-y \]

[_quadrature]

1.107

14354

\[ {}y^{\prime } = 1+y \]

[_quadrature]

1.141

14355

\[ {}y^{\prime } = y^{2}-4 \]

[_quadrature]

1.567

14356

\[ {}y^{\prime } = 4-y^{2} \]

[_quadrature]

1.543

14357

\[ {}y^{\prime } = x y \]

[_separable]

1.569

14358

\[ {}y^{\prime } = -x y \]

[_separable]

1.809

14359

\[ {}y^{\prime } = x^{2}-y^{2} \]

[_Riccati]

1.024

14360

\[ {}y^{\prime } = y^{2}-x^{2} \]

[_Riccati]

1.015

14361

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

1.182

14362

\[ {}y^{\prime } = x y \]

[_separable]

1.579

14363

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

3.503

14364

\[ {}y^{\prime } = \frac {y}{x} \]

[_separable]

1.598

14365

\[ {}y^{\prime } = 1+y^{2} \]

[_quadrature]

1.187

14366

\[ {}y^{\prime } = y^{2}-3 y \]

[_quadrature]

1.742

14367

\[ {}y^{\prime } = x^{3}+y^{3} \]

[_Abel]

0.620

14368

\[ {}y^{\prime } = {| y|} \]

[_quadrature]

1.142

14369

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

1.988

14370

\[ {}y^{\prime } = \ln \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.090

14371

\[ {}y^{\prime } = \frac {2 x -y}{x +3 y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.591

14372

\[ {}y^{\prime } = \frac {1}{\sqrt {15-x^{2}-y^{2}}} \]

[‘y=_G(x,y’)‘]

1.335

14373

\[ {}y^{\prime } = \frac {3 y}{\left (x -5\right ) \left (x +3\right )}+{\mathrm e}^{-x} \]

[_linear]

2.205

14374

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.224

14375

\[ {}y^{\prime } = \frac {1}{x y} \]

[_separable]

1.695

14376

\[ {}y^{\prime } = \ln \left (-1+y\right ) \]

[_quadrature]

1.036

14377

\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (-1+y\right )} \]

[_quadrature]

28.347

14378

\[ {}y^{\prime } = \frac {y}{y-x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.190

14379

\[ {}y^{\prime } = \frac {x}{y^{2}} \]

[_separable]

2.362

14380

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

[_separable]

3.817

14381

\[ {}y^{\prime } = \frac {x y}{1-y} \]

[_separable]

1.261

14382

\[ {}y^{\prime } = \left (x y\right )^{{1}/{3}} \]

[[_homogeneous, ‘class G‘]]

3.167

14383

\[ {}y^{\prime } = \sqrt {\frac {y-4}{x}} \]

[[_homogeneous, ‘class C‘], _dAlembert]

4.877

14384

\[ {}y^{\prime } = -\frac {y}{x}+y^{{1}/{4}} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

9.791

14385

\[ {}y^{\prime } = 4 y-5 \]
i.c.

[_quadrature]

1.556

14386

\[ {}y^{\prime }+3 y = 1 \]
i.c.

[_quadrature]

1.569

14387

\[ {}y^{\prime } = a y+b \]
i.c.

[_quadrature]

0.794

14388

\[ {}y^{\prime } = x^{2}+{\mathrm e}^{x}-\sin \left (x \right ) \]
i.c.

[_quadrature]

0.829

14389

\[ {}y^{\prime } = x y+\frac {1}{x^{2}+1} \]
i.c.

[_linear]

2.220

14390

\[ {}y^{\prime } = \frac {y}{x}+\cos \left (x \right ) \]
i.c.

[_linear]

1.602

14391

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (x \right ) \]
i.c.

[_linear]

2.171

14392

\[ {}y^{\prime } = \frac {y}{-x^{2}+4}+\sqrt {x} \]
i.c.

[_linear]

2.743

14393

\[ {}y^{\prime } = \frac {y}{-x^{2}+4}+\sqrt {x} \]
i.c.

[_linear]

2.480

14394

\[ {}y^{\prime } = \cot \left (x \right ) y+\csc \left (x \right ) \]
i.c.

[_linear]

1.801

14395

\[ {}y^{\prime } = -x \sqrt {1-y^{2}} \]
i.c.

[_separable]

3.883

14396

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.490

14397

\[ {}y^{\prime } = 3 x +1 \]
i.c.

[_quadrature]

0.607

14398

\[ {}y^{\prime } = x +\frac {1}{x} \]
i.c.

[_quadrature]

0.687

14399

\[ {}y^{\prime } = 2 \sin \left (x \right ) \]
i.c.

[_quadrature]

0.767

14400

\[ {}y^{\prime } = x \sin \left (x \right ) \]
i.c.

[_quadrature]

0.794