2.2.142 Problems 14101 to 14200

Table 2.285: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

14101

\[ {}\left [\begin {array}{c} x^{\prime }+5 x-2 y=0 \\ 2 x+y^{\prime }-y=0 \end {array}\right ] \]

system_of_ODEs

0.608

14102

\[ {}\left [\begin {array}{c} x^{\prime }-3 x+2 y=0 \\ y^{\prime }-x+3 y=0 \end {array}\right ] \]

system_of_ODEs

0.573

14103

\[ {}\left [\begin {array}{c} x^{\prime }+x-z=0 \\ x+y^{\prime }-y=0 \\ z^{\prime }+x+2 y-3 z=0 \end {array}\right ] \]

system_of_ODEs

0.336

14104

\[ {}\left [\begin {array}{c} x^{\prime }=-\frac {x}{2}+2 y-3 z \\ y^{\prime }=y-\frac {z}{2} \\ z^{\prime }=-2 x+z \end {array}\right ] \]

system_of_ODEs

0.858

14105

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }=y \\ x^{\prime }-y^{\prime }=x \end {array}\right ] \]

system_of_ODEs

0.454

14106

\[ {}\left [\begin {array}{c} x^{\prime }+2 y^{\prime }=t \\ x^{\prime }-y^{\prime }=x+y \end {array}\right ] \]

system_of_ODEs

0.453

14107

\[ {}\left [\begin {array}{c} x^{\prime }-y^{\prime }=x+y-t \\ 2 x^{\prime }+3 y^{\prime }=2 x+6 \end {array}\right ] \]

system_of_ODEs

0.505

14108

\[ {}\left [\begin {array}{c} 2 x^{\prime }-y^{\prime }=t \\ 3 x^{\prime }+2 y^{\prime }=y \end {array}\right ] \]

system_of_ODEs

0.365

14109

\[ {}\left [\begin {array}{c} 5 x^{\prime }-3 y^{\prime }=x+y \\ 3 x^{\prime }-y^{\prime }=t \end {array}\right ] \]

system_of_ODEs

0.456

14110

\[ {}\left [\begin {array}{c} x^{\prime }-4 y^{\prime }=0 \\ 2 x^{\prime }-3 y^{\prime }=y+t \end {array}\right ] \]

system_of_ODEs

0.348

14111

\[ {}\left [\begin {array}{c} 3 x^{\prime }+2 y^{\prime }=\sin \left (t \right ) \\ x^{\prime }-2 y^{\prime }=x+y+t \end {array}\right ] \]

system_of_ODEs

0.602

14112

\[ {}\left [\begin {array}{c} x^{\prime }=-4 x+9 y+12 \,{\mathrm e}^{-t} \\ y^{\prime }=-5 x+2 y \end {array}\right ] \]

system_of_ODEs

0.672

14113

\[ {}\left [\begin {array}{c} x^{\prime }=-7 x+6 y+6 \,{\mathrm e}^{-t} \\ y^{\prime }=-12 x+5 y+37 \end {array}\right ] \]

system_of_ODEs

0.720

14114

\[ {}\left [\begin {array}{c} x^{\prime }=-7 x+10 y+18 \,{\mathrm e}^{t} \\ y^{\prime }=-10 x+9 y+37 \end {array}\right ] \]

system_of_ODEs

0.965

14115

\[ {}\left [\begin {array}{c} x^{\prime }=-14 x+39 y+78 \sinh \left (t \right ) \\ y^{\prime }=-6 x+16 y+6 \cosh \left (t \right ) \end {array}\right ] \]

system_of_ODEs

1.186

14116

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+4 y-2 z-2 \sinh \left (t \right ) \\ y^{\prime }=4 x+2 y-2 z+10 \cosh \left (t \right ) \\ z^{\prime }=-x+3 y+z+5 \end {array}\right ] \]

system_of_ODEs

2.007

14117

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+6 y-2 z+50 \,{\mathrm e}^{t} \\ y^{\prime }=6 x+2 y-2 z+21 \,{\mathrm e}^{-t} \\ z^{\prime }=-x+6 y+z+9 \end {array}\right ] \]

system_of_ODEs

0.891

14118

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x-2 y+4 z \\ y^{\prime }=-2 x+y+2 z \\ z^{\prime }=-4 x-2 y+6 z+{\mathrm e}^{2 t} \end {array}\right ] \]

system_of_ODEs

0.609

14119

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-2 y+3 z \\ y^{\prime }=x-y+2 z+2 \,{\mathrm e}^{-t} \\ z^{\prime }=-2 x+2 y-2 z \end {array}\right ] \]

system_of_ODEs

0.811

14120

\[ {}\left [\begin {array}{c} x^{\prime }=7 x+y-1-6 \,{\mathrm e}^{t} \\ y^{\prime }=-4 x+3 y+4 \,{\mathrm e}^{t}-3 \end {array}\right ] \]
i.c.

system_of_ODEs

0.613

14121

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-2 y+24 \sin \left (t \right ) \\ y^{\prime }=9 x-3 y+12 \cos \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

0.876

14122

\[ {}\left [\begin {array}{c} x^{\prime }=7 x-4 y+10 \,{\mathrm e}^{t} \\ y^{\prime }=3 x+14 y+6 \,{\mathrm e}^{2 t} \end {array}\right ] \]
i.c.

system_of_ODEs

0.612

14123

\[ {}\left [\begin {array}{c} x^{\prime }=-7 x+4 y+6 \,{\mathrm e}^{3 t} \\ y^{\prime }=-5 x+2 y+6 \,{\mathrm e}^{2 t} \end {array}\right ] \]
i.c.

system_of_ODEs

0.620

14124

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x-3 y+z \\ y^{\prime }=2 y+2 z+29 \,{\mathrm e}^{-t} \\ z^{\prime }=5 x+y+z+39 \,{\mathrm e}^{t} \end {array}\right ] \]
i.c.

system_of_ODEs

25.722

14125

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+y-z+5 \sin \left (t \right ) \\ y^{\prime }=y+z-10 \cos \left (t \right ) \\ z^{\prime }=x+z+2 \end {array}\right ] \]
i.c.

system_of_ODEs

1.494

14126

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+3 y+z+5 \sin \left (2 t \right ) \\ y^{\prime }=x-5 y-3 z+5 \cos \left (2 t \right ) \\ z^{\prime }=-3 x+7 y+3 z+23 \,{\mathrm e}^{t} \end {array}\right ] \]
i.c.

system_of_ODEs

2.381

14127

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+y-3 z+2 \,{\mathrm e}^{t} \\ y^{\prime }=4 x-y+2 z+4 \,{\mathrm e}^{t} \\ z^{\prime }=4 x-2 y+3 z+4 \,{\mathrm e}^{t} \end {array}\right ] \]
i.c.

system_of_ODEs

1.448

14128

\[ {}\left [\begin {array}{c} x^{\prime }=x+5 y+10 \sinh \left (t \right ) \\ y^{\prime }=19 x-13 y+24 \sinh \left (t \right ) \end {array}\right ] \]

system_of_ODEs

1.304

14129

\[ {}\left [\begin {array}{c} x^{\prime }=9 x-3 y-6 t \\ y^{\prime }=-x+11 y+10 t \end {array}\right ] \]

system_of_ODEs

0.489

14130

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.330

14131

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

0.376

14132

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{{3}/{2}} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.432

14133

\[ {}y^{\prime \prime }+4 y = 2 \sec \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.417

14134

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y = x \]

[[_2nd_order, _linear, _nonhomogeneous]]

8.737

14135

\[ {}y^{\prime \prime }+y = f \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.832

14136

\[ {}x^{2} y^{\prime \prime }+x \left (x -\frac {1}{2}\right ) y^{\prime }+\frac {y}{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.046

14137

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.813

14138

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (1-5 x \right ) y^{\prime }-4 y = 0 \]

[_Jacobi]

0.723

14139

\[ {}\left (x^{2}-1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.641

14140

\[ {}x y^{\prime \prime }+4 y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.703

14141

\[ {}2 x y^{\prime \prime }+\left (x +1\right ) y^{\prime }-k y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.973

14142

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

0.113

14143

\[ {}x^{2} y^{\prime \prime }+y^{\prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.162

14144

\[ {}2 x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.816

14145

\[ {}x \left (x -1\right ) y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.169

14146

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.935

14147

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

0.691

14148

\[ {}x y^{\prime \prime }+x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.639

14149

\[ {}y^{\prime \prime }+\alpha ^{2} y = 0 \]

[[_2nd_order, _missing_x]]

1.712

14150

\[ {}y^{\prime \prime }-\alpha ^{2} y = 0 \]

[[_2nd_order, _missing_x]]

3.079

14151

\[ {}y^{\prime \prime }+\beta y^{\prime }+\gamma y = 0 \]

[[_2nd_order, _missing_x]]

2.974

14152

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +n \left (n +1\right ) y = 0 \]

[_Gegenbauer]

0.912

14153

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (-\nu ^{2}+x^{2}\right ) y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6.736

14154

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

[_linear]

2.194

14155

\[ {}{y^{\prime }}^{2}-y^{\prime }-y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.420

14156

\[ {}y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.914

14157

\[ {}x y \left (1-{y^{\prime }}^{2}\right ) = \left (x^{2}-y^{2}-a^{2}\right ) y^{\prime } \]

[_rational]

116.954

14158

\[ {}y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x} = 0 \]

[[_3rd_order, _missing_y]]

0.184

14159

\[ {}y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

0.835

14160

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -a^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.005

14161

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = 0 \]

[[_2nd_order, _missing_y]]

0.662

14162

\[ {}y-y^{\prime } x = 0 \]

[_separable]

1.602

14163

\[ {}\left (1+u \right ) v+\left (1-v\right ) u v^{\prime } = 0 \]

[_separable]

1.427

14164

\[ {}1+y-\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

1.881

14165

\[ {}\left (t^{2}+x t^{2}\right ) x^{\prime }+x^{2}+t x^{2} = 0 \]

[_separable]

1.664

14166

\[ {}y-a +x^{2} y^{\prime } = 0 \]

[_separable]

0.879

14167

\[ {}z-\left (-a^{2}+t^{2}\right ) z^{\prime } = 0 \]

[_separable]

1.434

14168

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

2.052

14169

\[ {}1+s^{2}-\sqrt {t}\, s^{\prime } = 0 \]

[_separable]

2.087

14170

\[ {}r^{\prime }+r \tan \left (t \right ) = 0 \]

[_separable]

1.746

14171

\[ {}\left (x^{2}+1\right ) y^{\prime }-\sqrt {1-y^{2}} = 0 \]

[_separable]

1.976

14172

\[ {}\sqrt {-x^{2}+1}\, y^{\prime }-\sqrt {1-y^{2}} = 0 \]

[_separable]

4.473

14173

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[_separable]

2.983

14174

\[ {}x -x y^{2}+\left (y-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

2.046

14175

\[ {}y-x +\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.615

14176

\[ {}x +y+y^{\prime } x = 0 \]

[_linear]

2.349

14177

\[ {}x +y+\left (y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.545

14178

\[ {}-y+y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.309

14179

\[ {}8 y+10 x +\left (5 y+7 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.013

14180

\[ {}2 \sqrt {s t}-s+t s^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

6.275

14181

\[ {}t -s+t s^{\prime } = 0 \]

[_linear]

1.500

14182

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7.851

14183

\[ {}x \cos \left (\frac {y}{x}\right ) \left (y+y^{\prime } x \right ) = y \sin \left (\frac {y}{x}\right ) \left (-y+y^{\prime } x \right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

6.896

14184

\[ {}3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.993

14185

\[ {}x +2 y+1-\left (4 y+2 x +3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.837

14186

\[ {}x +2 y+1-\left (2 x -3\right ) y^{\prime } = 0 \]

[_linear]

1.403

14187

\[ {}\frac {y-y^{\prime } x}{\sqrt {x^{2}+y^{2}}} = m \]

[[_homogeneous, ‘class A‘], _dAlembert]

13.733

14188

\[ {}\frac {x +y y^{\prime }}{\sqrt {x^{2}+y^{2}}} = m \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

68.203

14189

\[ {}y+\frac {x}{y^{\prime }} = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.194

14190

\[ {}y y^{\prime } = -x +\sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.498

14191

\[ {}y^{\prime }-\frac {2 y}{x +1} = \left (x +1\right )^{3} \]

[_linear]

1.546

14192

\[ {}y^{\prime }-\frac {a y}{x} = \frac {x +1}{x} \]

[_linear]

1.247

14193

\[ {}\left (-x^{2}+x \right ) y^{\prime }+\left (2 x^{2}-1\right ) y-a \,x^{3} = 0 \]

[_linear]

1.343

14194

\[ {}s^{\prime } \cos \left (t \right )+s \sin \left (t \right ) = 1 \]

[_linear]

1.947

14195

\[ {}s^{\prime }+s \cos \left (t \right ) = \frac {\sin \left (2 t \right )}{2} \]

[_linear]

2.166

14196

\[ {}y^{\prime }-\frac {n y}{x} = {\mathrm e}^{x} x^{n} \]

[_linear]

1.170

14197

\[ {}y^{\prime }+\frac {n y}{x} = a \,x^{-n} \]

[_linear]

0.935

14198

\[ {}y^{\prime }+y = {\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

1.169

14199

\[ {}y^{\prime }+\frac {\left (1-2 x \right ) y}{x^{2}}-1 = 0 \]

[_linear]

1.623

14200

\[ {}y^{\prime }+x y = x^{3} y^{3} \]

[_Bernoulli]

1.228