2.2.14 Problems 1301 to 1400

Table 2.29: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

1301

\[ {}y^{\prime \prime }+t y^{\prime }+{\mathrm e}^{-t^{2}} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.987

1302

\[ {}t y^{\prime \prime }+\left (t^{2}-1\right ) y^{\prime }+t^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.216

1303

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.224

1304

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.207

1305

\[ {}4 y^{\prime \prime }-4 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

1.039

1306

\[ {}4 y^{\prime \prime }+12 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1.205

1307

\[ {}y^{\prime \prime }-2 y^{\prime }+10 y = 0 \]

[[_2nd_order, _missing_x]]

2.135

1308

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1.208

1309

\[ {}4 y^{\prime \prime }+17 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

1.116

1310

\[ {}16 y^{\prime \prime }+24 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1.225

1311

\[ {}25 y^{\prime \prime }-20 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

1.179

1312

\[ {}2 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.802

1313

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.592

1314

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.506

1315

\[ {}9 y^{\prime \prime }+6 y^{\prime }+82 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.882

1316

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.628

1317

\[ {}4 y^{\prime \prime }+12 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.567

1318

\[ {}y^{\prime \prime }-y^{\prime }+\frac {y}{4} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.285

1319

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.328

1320

\[ {}t^{2} y^{\prime \prime }+2 t y^{\prime }-2 y = 0 \]

[[_Emden, _Fowler]]

0.332

1321

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.328

1322

\[ {}t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.355

1323

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.410

1324

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.340

1325

\[ {}x^{2} y^{\prime \prime }-\left (x -\frac {3}{16}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.341

1326

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.394

1327

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.136

1328

\[ {}t^{2} y^{\prime \prime }+2 t y^{\prime }+\frac {y}{4} = 0 \]

[[_Emden, _Fowler]]

1.116

1329

\[ {}2 t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

1.322

1330

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.300

1331

\[ {}4 t^{2} y^{\prime \prime }-8 t y^{\prime }+9 y = 0 \]

[[_Emden, _Fowler]]

1.143

1332

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }+13 y = 0 \]

[[_Emden, _Fowler]]

2.564

1333

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{t} \]

[[_2nd_order, _with_linear_symmetries]]

1.270

1334

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 2 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

1.405

1335

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

1.394

1336

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 16 \,{\mathrm e}^{\frac {t}{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1.429

1337

\[ {}y^{\prime \prime }+y = \tan \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.261

1338

\[ {}y^{\prime \prime }+9 y = 9 \sec \left (3 t \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7.309

1339

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 t}}{t^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.471

1340

\[ {}y^{\prime \prime }+4 y = 3 \csc \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.667

1341

\[ {}y^{\prime \prime }+y = 2 \sec \left (\frac {t}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.357

1342

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.827

1343

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = g \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.760

1344

\[ {}y^{\prime \prime }+4 y = g \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.958

1345

\[ {}t^{2} y^{\prime \prime }-2 y = 3 t^{2}-1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.110

1346

\[ {}t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 2 t^{3} \]

[[_2nd_order, _with_linear_symmetries]]

1.585

1347

\[ {}t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y = {\mathrm e}^{2 t} t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.273

1348

\[ {}\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right )^{2} {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

1.640

1349

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.754

1350

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = g \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.541

1351

\[ {}t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 4 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.926

1352

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y = t \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.728

1353

\[ {}t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y = {\mathrm e}^{2 t} t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.258

1354

\[ {}\left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right ) {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

1.783

1355

\[ {}u^{\prime \prime }+2 u = 0 \]

[[_2nd_order, _missing_x]]

2.333

1356

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+2 u = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.013

1357

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u = 3 \cos \left (\frac {t}{4}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

75.574

1358

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u = 3 \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

76.253

1359

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u = 3 \cos \left (6 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

78.105

1360

\[ {}u^{\prime \prime }+u^{\prime }+\frac {u^{3}}{5} = \cos \left (t \right ) \]
i.c.

[NONE]

0.293

1361

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

0.612

1362

\[ {}y^{\prime \prime }-y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.516

1363

\[ {}y^{\prime \prime }+k^{2} x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.487

1364

\[ {}\left (1-x \right ) y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.606

1365

\[ {}\left (x^{2}+2\right ) y^{\prime \prime }-y^{\prime } x +4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.613

1366

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.512

1367

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.494

1368

\[ {}\left (-x^{2}+4\right ) y^{\prime \prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.574

1369

\[ {}\left (-x^{2}+3\right ) y^{\prime \prime }-3 y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.609

1370

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.494

1371

\[ {}2 y^{\prime \prime }+y^{\prime } x +3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.564

1372

\[ {}y^{\prime \prime }-y^{\prime } x -y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.497

1373

\[ {}\left (x^{2}+2\right ) y^{\prime \prime }-y^{\prime } x +4 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.607

1374

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.506

1375

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.509

1376

\[ {}y^{\prime \prime }-2 y^{\prime } x +\lambda y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.598

1377

\[ {}y^{\prime \prime }-y^{\prime } x -y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.487

1378

\[ {}\left (x^{2}+2\right ) y^{\prime \prime }-y^{\prime } x +4 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.601

1379

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.497

1380

\[ {}\left (-x^{2}+4\right ) y^{\prime \prime }+y^{\prime } x +2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.612

1381

\[ {}y^{\prime \prime }+x^{2} y = 0 \]
i.c.

[[_Emden, _Fowler]]

0.465

1382

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.548

1383

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.497

1384

\[ {}y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+\cos \left (x \right ) y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.844

1385

\[ {}x^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+3 y \ln \left (x \right ) = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.996

1386

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+\sin \left (x \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.972

1387

\[ {}y^{\prime \prime }+4 y^{\prime }+6 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.614

1388

\[ {}y^{\prime \prime }+4 y^{\prime }+6 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.659

1389

\[ {}\left (x^{2}-2 x -3\right ) y^{\prime \prime }+y^{\prime } x +4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.672

1390

\[ {}\left (x^{2}-2 x -3\right ) y^{\prime \prime }+y^{\prime } x +4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.736

1391

\[ {}\left (x^{2}-2 x -3\right ) y^{\prime \prime }+y^{\prime } x +4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.735

1392

\[ {}\left (x^{3}+1\right ) y^{\prime \prime }+4 y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.667

1393

\[ {}\left (x^{3}+1\right ) y^{\prime \prime }+4 y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.776

1394

\[ {}x y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.609

1395

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\alpha ^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.680

1396

\[ {}y^{\prime }-y = 0 \]

[_quadrature]

0.563

1397

\[ {}y^{\prime }-x y = 0 \]

[_separable]

0.603

1398

\[ {}\left (1-x \right ) y^{\prime } = y \]

[_separable]

0.616

1399

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\alpha \left (\alpha +1\right ) y = 0 \]

[_Gegenbauer]

0.736

1400

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-\frac {x_{1}}{10}+\frac {3 x_{2}}{40} \\ x_{2}^{\prime }=\frac {x_{1}}{10}-\frac {x_{2}}{5} \end {array}\right ] \]
i.c.

system_of_ODEs

0.552