2.2.134 Problems 13301 to 13400

Table 2.269: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

13301

\[ {}\left (2 s^{2}+2 s t +t^{2}\right ) s^{\prime }+s^{2}+2 s t -t^{2} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

6.582

13302

\[ {}x^{3}+y^{2} \sqrt {x^{2}+y^{2}}-x y \sqrt {x^{2}+y^{2}}\, y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

5.871

13303

\[ {}\sqrt {x +y}+\sqrt {x -y}+\left (\sqrt {x -y}-\sqrt {x +y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

12.877

13304

\[ {}y+2+y \left (x +4\right ) y^{\prime } = 0 \]
i.c.

[_separable]

2.877

13305

\[ {}8 \cos \left (y\right )^{2}+\csc \left (x \right )^{2} y^{\prime } = 0 \]
i.c.

[_separable]

3.009

13306

\[ {}\left (3 x +8\right ) \left (y^{2}+4\right )-4 y \left (x^{2}+5 x +6\right ) y^{\prime } = 0 \]
i.c.

[_separable]

3.300

13307

\[ {}x^{2}+3 y^{2}-2 x y y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6.177

13308

\[ {}2 x -5 y+\left (4 x -y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.580

13309

\[ {}3 x^{2}+9 x y+5 y^{2}-\left (6 x^{2}+4 x y\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

101.094

13310

\[ {}x +2 y+\left (2 x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.802

13311

\[ {}3 x -y-\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.042

13312

\[ {}x^{2}+2 y^{2}+\left (4 x y-y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

134.829

13313

\[ {}2 x^{2}+2 x y+y^{2}+\left (2 x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5.127

13314

\[ {}y^{\prime }+\frac {3 y}{x} = 6 x^{2} \]

[_linear]

1.655

13315

\[ {}x^{4} y^{\prime }+2 x^{3} y = 1 \]

[_linear]

1.502

13316

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

[[_linear, ‘class A‘]]

1.671

13317

\[ {}y^{\prime }+4 x y = 8 x \]

[_separable]

1.431

13318

\[ {}x^{\prime }+\frac {x}{t^{2}} = \frac {1}{t^{2}} \]

[_separable]

1.443

13319

\[ {}\left (u^{2}+1\right ) v^{\prime }+4 v u = 3 u \]

[_separable]

1.595

13320

\[ {}y^{\prime } x +\frac {\left (2 x +1\right ) y}{x +1} = x -1 \]

[_linear]

1.378

13321

\[ {}\left (x^{2}+x -2\right ) y^{\prime }+3 \left (x +1\right ) y = x -1 \]

[_linear]

1.584

13322

\[ {}y^{\prime } x +x y+y-1 = 0 \]

[_linear]

1.153

13323

\[ {}y+\left (x y^{2}+x -y\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.205

13324

\[ {}r^{\prime }+r \tan \left (t \right ) = \cos \left (t \right ) \]

[_linear]

1.724

13325

\[ {}\cos \left (t \right ) r^{\prime }+r \sin \left (t \right )-\cos \left (t \right )^{4} = 0 \]

[_linear]

3.059

13326

\[ {}\cos \left (x \right )^{2}-y \cos \left (x \right )-\left (1+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_linear]

2.901

13327

\[ {}y \sin \left (2 x \right )-\cos \left (x \right )+\left (1+\sin \left (x \right )^{2}\right ) y^{\prime } = 0 \]

[_linear]

4.173

13328

\[ {}y^{\prime }-\frac {y}{x} = -\frac {y^{2}}{x} \]

[_separable]

2.357

13329

\[ {}y^{\prime } x +y = -2 x^{6} y^{4} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3.426

13330

\[ {}y^{\prime }+\left (4 y-\frac {8}{y^{3}}\right ) x = 0 \]

[_separable]

2.664

13331

\[ {}x^{\prime }+\frac {\left (1+t \right ) x}{2 t} = \frac {1+t}{t x} \]

[_separable]

2.019

13332

\[ {}y^{\prime } x -2 y = 2 x^{4} \]
i.c.

[_linear]

1.971

13333

\[ {}y^{\prime }+3 x^{2} y = x^{2} \]
i.c.

[_separable]

1.261

13334

\[ {}{\mathrm e}^{x} \left (y-3 \left ({\mathrm e}^{x}+1\right )^{2}\right )+\left ({\mathrm e}^{x}+1\right ) y^{\prime } = 0 \]
i.c.

[_linear]

1.912

13335

\[ {}2 x \left (1+y\right )-\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

1.770

13336

\[ {}r^{\prime }+r \tan \left (t \right ) = \cos \left (t \right )^{2} \]
i.c.

[_linear]

2.118

13337

\[ {}x^{\prime }-x = \sin \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.657

13338

\[ {}y^{\prime }+\frac {y}{2 x} = \frac {x}{y^{3}} \]
i.c.

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

4.407

13339

\[ {}y^{\prime } x +y = \left (x y\right )^{{3}/{2}} \]
i.c.

[[_homogeneous, ‘class G‘], _rational]

494.115

13340

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 2 & 0\le x <1 \\ 0 & 1\le x \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.694

13341

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 5 & 0\le x <10 \\ 1 & 10\le x \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.833

13342

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} {\mathrm e}^{-x} & 0\le x <2 \\ {\mathrm e}^{-2} & 2\le x \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.654

13343

\[ {}\left (x +2\right ) y^{\prime }+y = \left \{\begin {array}{cc} 2 x & 0\le x <2 \\ 4 & 2\le x \end {array}\right . \]
i.c.

[_linear]

0.664

13344

\[ {}a y^{\prime }+b y = k \,{\mathrm e}^{-\lambda x} \]

[[_linear, ‘class A‘]]

1.103

13345

\[ {}y^{\prime }+y = 2 \sin \left (x \right )+5 \sin \left (2 x \right ) \]

[[_linear, ‘class A‘]]

2.112

13346

\[ {}\cos \left (y\right ) y^{\prime }+\frac {\sin \left (y\right )}{x} = 1 \]

[‘y=_G(x,y’)‘]

1.734

13347

\[ {}\left (1+y\right ) y^{\prime }+x \left (y^{2}+2 y\right ) = x \]

[_separable]

1.885

13348

\[ {}y^{\prime } = \left (1-x \right ) y^{2}+\left (2 x -1\right ) y-x \]

[_Riccati]

2.141

13349

\[ {}y^{\prime } = -y^{2}+x y+1 \]

[_Riccati]

1.240

13350

\[ {}y^{\prime } = -8 x y^{2}+4 x \left (4 x +1\right ) y-8 x^{3}-4 x^{2}+1 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

2.419

13351

\[ {}6 x^{2} y-\left (x^{3}+1\right ) y^{\prime } = 0 \]

[_separable]

1.851

13352

\[ {}\left (3 x^{2} y^{2}-x \right ) y^{\prime }+2 x y^{3}-y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

2.681

13353

\[ {}y-1+x \left (x +1\right ) y^{\prime } = 0 \]

[_separable]

1.587

13354

\[ {}x^{2}-2 y+y^{\prime } x = 0 \]

[_linear]

1.207

13355

\[ {}3 x -5 y+\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7.392

13356

\[ {}{\mathrm e}^{2 x} y^{2}+\left ({\mathrm e}^{2 x} y-2 y\right ) y^{\prime } = 0 \]

[_separable]

2.246

13357

\[ {}8 x^{3} y-12 x^{3}+\left (x^{4}+1\right ) y^{\prime } = 0 \]

[_separable]

1.615

13358

\[ {}2 x^{2}+x y+y^{2}+2 x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

3.941

13359

\[ {}y^{\prime } = \frac {4 x^{3} y^{2}-3 x^{2} y}{x^{3}-2 x^{4} y} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.508

13360

\[ {}\left (x +1\right ) y^{\prime }+x y = {\mathrm e}^{-x} \]

[_linear]

2.009

13361

\[ {}y^{\prime } = \frac {2 x -7 y}{3 y-8 x} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.447

13362

\[ {}x^{2} y^{\prime }+x y = x y^{3} \]

[_separable]

4.372

13363

\[ {}\left (x^{3}+1\right ) y^{\prime }+6 x^{2} y = 6 x^{2} \]

[_separable]

1.641

13364

\[ {}y^{\prime } = \frac {2 x^{2}+y^{2}}{2 x y-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

15.227

13365

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

10.018

13366

\[ {}2 y^{2}+8+\left (-x^{2}+1\right ) y y^{\prime } = 0 \]
i.c.

[_separable]

3.163

13367

\[ {}{\mathrm e}^{2 x} y^{2}-2 x +{\mathrm e}^{2 x} y y^{\prime } = 0 \]
i.c.

[_exact, _Bernoulli]

3.163

13368

\[ {}3 x^{2}+2 x y^{2}+\left (2 x^{2} y+6 y^{2}\right ) y^{\prime } = 0 \]
i.c.

[_exact, _rational]

19.559

13369

\[ {}4 x y y^{\prime } = 1+y^{2} \]
i.c.

[_separable]

4.250

13370

\[ {}y^{\prime } = \frac {2 x +7 y}{2 x -2 y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7.069

13371

\[ {}y^{\prime } = \frac {x y}{x^{2}+1} \]
i.c.

[_separable]

2.421

13372

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 1 & 0\le x <2 \\ 0 & 0<x \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

0.653

13373

\[ {}\left (x +2\right ) y^{\prime }+y = \left \{\begin {array}{cc} 2 x & 0\le x \le 2 \\ 4 & 2<x \end {array}\right . \]
i.c.

[_linear]

0.664

13374

\[ {}x^{2} y^{\prime }+x y = \frac {y^{3}}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

160.372

13375

\[ {}5 x y+4 y^{2}+1+\left (2 x y+x^{2}\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.456

13376

\[ {}2 x +\tan \left (y\right )+\left (x -x^{2} \tan \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

2.100

13377

\[ {}y^{2} \left (x +1\right )+y+\left (2 x y+1\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.248

13378

\[ {}2 x y^{2}+y+\left (2 y^{3}-x \right ) y^{\prime } = 0 \]

[_rational]

2.254

13379

\[ {}4 x y^{2}+6 y+\left (5 x^{2} y+8 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.205

13380

\[ {}8 x^{2} y^{3}-2 y^{4}+\left (5 x^{3} y^{2}-8 x y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.868

13381

\[ {}5 x +2 y+1+\left (2 x +y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.276

13382

\[ {}3 x -y+1-\left (6 x -2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.839

13383

\[ {}x -2 y-3+\left (2 x +y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.444

13384

\[ {}10 x -4 y+12-\left (x +5 y+3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.957

13385

\[ {}6 x +4 y+1+\left (4 x +2 y+2\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.048

13386

\[ {}3 x -y-6+\left (x +y+2\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

11.635

13387

\[ {}2 x +3 y+1+\left (4 x +6 y+1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.211

13388

\[ {}4 x +3 y+1+\left (x +y+1\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.277

13389

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.598

13390

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

280.479

13391

\[ {}y^{\prime \prime }+y^{\prime } x +x^{2} y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.598

13392

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

1.082

13393

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.484

13394

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.083

13395

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.504

13396

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

1.072

13397

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+5 y^{\prime }+12 y = 0 \]

[[_3rd_order, _missing_x]]

0.072

13398

\[ {}x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+8 y^{\prime } x -8 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.124

13399

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler]]

0.303

13400

\[ {}\left (x +1\right )^{2} y^{\prime \prime }-3 \left (x +1\right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.315