2.2.131 Problems 13001 to 13100

Table 2.263: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

13001

\[ {}\left (x -1\right )^{2} y^{\prime \prime }+4 \left (x -1\right ) y^{\prime }+2 y = \cos \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.037

13002

\[ {}\left (x^{3}-x \right ) y^{\prime \prime \prime }+\left (8 x^{2}-3\right ) y^{\prime \prime }+14 y^{\prime } x +4 y = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

0.265

13003

\[ {}2 x^{3} y y^{\prime \prime \prime }+6 x^{3} y^{\prime } y^{\prime \prime }+18 x^{2} y y^{\prime \prime }+18 x^{2} {y^{\prime }}^{2}+36 x y y^{\prime }+6 y^{2} = 0 \]

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

0.070

13004

\[ {}x^{5} y^{\prime \prime }+\left (2 x^{4}-x \right ) y^{\prime }-\left (2 x^{3}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.276

13005

\[ {}x^{2} \left (-x^{3}+1\right ) y^{\prime \prime }-x^{3} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

105.627

13006

\[ {}x^{2} y^{\prime \prime \prime }-5 x y^{\prime \prime }+\left (4 x^{4}+5\right ) y^{\prime }-8 x^{3} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.062

13007

\[ {}y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }+2 \tan \left (x \right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y]]

1.125

13008

\[ {}x^{2} y y^{\prime \prime }+\left (-y+y^{\prime } x \right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.150

13009

\[ {}x^{3} y^{\prime \prime }-\left (-y+y^{\prime } x \right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.154

13010

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} \ln \left (y\right )-x^{2} y^{2} \]

[[_2nd_order, _reducible, _mu_xy]]

0.165

13011

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.711

13012

\[ {}y^{\prime \prime } = {y^{\prime }}^{2}+1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

4.487

13013

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x = 2 \]

[[_2nd_order, _missing_y]]

1.345

13014

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.576

13015

\[ {}\left (x^{3}+1\right ) y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+18 y^{\prime } x +6 y = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

0.180

13016

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (4 x +2\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.430

13017

\[ {}y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.488

13018

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 0 \]

[[_2nd_order, _missing_y]]

0.772

13019

\[ {}x \left (x +2 y\right ) y^{\prime \prime }+2 x {y^{\prime }}^{2}+4 \left (x +y\right ) y^{\prime }+2 y+x^{2} = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

0.868

13020

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

3.894

13021

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-\frac {y^{\prime }}{x}+x^{2} = 0 \]

[[_2nd_order, _missing_y]]

1.585

13022

\[ {}4 x^{2} y^{\prime \prime \prime }+8 x y^{\prime \prime }+y^{\prime } = 0 \]

[[_3rd_order, _missing_y]]

0.316

13023

\[ {}\sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 \sin \left (x \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.385

13024

\[ {}\left [\begin {array}{c} 3 x^{\prime }+3 x+2 y={\mathrm e}^{t} \\ 4 x-3 y^{\prime }+3 y=3 t \end {array}\right ] \]

system_of_ODEs

0.511

13025

\[ {}x^{\prime } = \frac {2 x}{t} \]

[_separable]

2.157

13026

\[ {}x^{\prime } = -\frac {t}{x} \]

[_separable]

3.342

13027

\[ {}x^{\prime } = -x^{2} \]

[_quadrature]

1.274

13028

\[ {}x^{\prime \prime }+2 x^{\prime }+2 x = 0 \]

[[_2nd_order, _missing_x]]

1.544

13029

\[ {}x^{\prime } = {\mathrm e}^{-x} \]

[_quadrature]

1.278

13030

\[ {}x^{\prime }+2 x = t^{2}+4 t +7 \]

[[_linear, ‘class A‘]]

1.336

13031

\[ {}2 t x^{\prime } = x \]

[_separable]

2.203

13032

\[ {}t^{2} x^{\prime \prime }-6 x = 0 \]

[[_Emden, _Fowler]]

0.683

13033

\[ {}2 x^{\prime \prime }-5 x^{\prime }-3 x = 0 \]

[[_2nd_order, _missing_x]]

1.100

13034

\[ {}x^{\prime } = x \left (1-\frac {x}{4}\right ) \]

[_quadrature]

1.981

13035

\[ {}x^{\prime } = x^{2}+t^{2} \]

[[_Riccati, _special]]

1.055

13036

\[ {}x^{\prime } = t \cos \left (t^{2}\right ) \]
i.c.

[_quadrature]

0.825

13037

\[ {}x^{\prime } = \frac {1+t}{\sqrt {t}} \]
i.c.

[_quadrature]

0.617

13038

\[ {}x^{\prime \prime } = -3 \sqrt {t} \]
i.c.

[[_2nd_order, _quadrature]]

1.796

13039

\[ {}x^{\prime } = t \,{\mathrm e}^{-2 t} \]

[_quadrature]

0.517

13040

\[ {}x^{\prime } = \frac {1}{t \ln \left (t \right )} \]

[_quadrature]

0.405

13041

\[ {}\sqrt {t}\, x^{\prime } = \cos \left (\sqrt {t}\right ) \]

[_quadrature]

0.608

13042

\[ {}x^{\prime } = \frac {{\mathrm e}^{-t}}{\sqrt {t}} \]
i.c.

[_quadrature]

0.534

13043

\[ {}x^{\prime }+t x^{\prime \prime } = 1 \]
i.c.

[[_2nd_order, _missing_y]]

1.462

13044

\[ {}x^{\prime } = \sqrt {x} \]
i.c.

[_quadrature]

1.130

13045

\[ {}x^{\prime } = {\mathrm e}^{-2 x} \]
i.c.

[_quadrature]

1.735

13046

\[ {}y^{\prime } = 1+y^{2} \]

[_quadrature]

1.188

13047

\[ {}u^{\prime } = \frac {1}{5-2 u} \]

[_quadrature]

1.221

13048

\[ {}x^{\prime } = a x+b \]

[_quadrature]

0.711

13049

\[ {}Q^{\prime } = \frac {Q}{4+Q^{2}} \]

[_quadrature]

1.802

13050

\[ {}x^{\prime } = {\mathrm e}^{x^{2}} \]

[_quadrature]

1.206

13051

\[ {}y^{\prime } = r \left (a -y\right ) \]

[_quadrature]

0.697

13052

\[ {}x^{\prime } = \frac {2 x}{1+t} \]

[_separable]

2.054

13053

\[ {}\theta ^{\prime } = t \sqrt {t^{2}+1}\, \sec \left (\theta \right ) \]

[_separable]

1.870

13054

\[ {}\left (2 u+1\right ) u^{\prime }-1-t = 0 \]

[_separable]

2.657

13055

\[ {}R^{\prime } = \left (1+t \right ) \left (1+R^{2}\right ) \]

[_separable]

2.296

13056

\[ {}y^{\prime }+y+\frac {1}{y} = 0 \]

[_quadrature]

13.691

13057

\[ {}\left (1+t \right ) x^{\prime }+x^{2} = 0 \]

[_separable]

1.460

13058

\[ {}y^{\prime } = \frac {1}{2 y+1} \]
i.c.

[_quadrature]

1.695

13059

\[ {}x^{\prime } = \left (4 t -x\right )^{2} \]
i.c.

[[_homogeneous, ‘class C‘], _Riccati]

2.474

13060

\[ {}x^{\prime } = 2 t x^{2} \]
i.c.

[_separable]

2.451

13061

\[ {}x^{\prime } = t^{2} {\mathrm e}^{-x} \]
i.c.

[_separable]

2.322

13062

\[ {}x^{\prime } = x \left (4+x\right ) \]
i.c.

[_quadrature]

2.570

13063

\[ {}x^{\prime } = {\mathrm e}^{t +x} \]
i.c.

[_separable]

3.585

13064

\[ {}T^{\prime } = 2 a t \left (T^{2}-a^{2}\right ) \]
i.c.

[_separable]

1.969

13065

\[ {}y^{\prime } = t^{2} \tan \left (y\right ) \]
i.c.

[_separable]

1.859

13066

\[ {}x^{\prime } = \frac {\left (4+2 t \right ) x}{\ln \left (x\right )} \]
i.c.

[_separable]

2.749

13067

\[ {}y^{\prime } = \frac {2 t y^{2}}{t^{2}+1} \]
i.c.

[_separable]

2.187

13068

\[ {}x^{\prime } = \frac {t^{2}}{1-x^{2}} \]
i.c.

[_separable]

3.038

13069

\[ {}x^{\prime } = 6 t \left (x-1\right )^{{2}/{3}} \]

[_separable]

2.929

13070

\[ {}x^{\prime } = \frac {4 t^{2}+3 x^{2}}{2 t x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4.333

13071

\[ {}x^{\prime } {\mathrm e}^{2 t}+2 x \,{\mathrm e}^{2 t} = {\mathrm e}^{-t} \]
i.c.

[[_linear, ‘class A‘]]

1.822

13072

\[ {}\frac {x^{\prime }+t x^{\prime \prime }}{t} = -2 \]

[[_2nd_order, _missing_y]]

0.992

13073

\[ {}y^{\prime } = \frac {y^{2}+2 t y}{t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.771

13074

\[ {}y^{\prime } = -y^{2} {\mathrm e}^{-t^{2}} \]
i.c.

[_separable]

2.162

13075

\[ {}x^{\prime } = 2 t^{3} x-6 \]

[_linear]

1.675

13076

\[ {}\cos \left (t \right ) x^{\prime }-2 x \sin \left (x\right ) = 0 \]

[_separable]

2.421

13077

\[ {}x^{\prime } = t -x^{2} \]

[[_Riccati, _special]]

1.000

13078

\[ {}7 t^{2} x^{\prime } = 3 x-2 t \]

[_linear]

1.216

13079

\[ {}x x^{\prime } = 1-t x \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.655

13080

\[ {}{x^{\prime }}^{2}+t x = \sqrt {1+t} \]

[‘y=_G(x,y’)‘]

3.660

13081

\[ {}x^{\prime } = -\frac {2 x}{t}+t \]

[_linear]

1.638

13082

\[ {}y^{\prime }+y = {\mathrm e}^{t} \]

[[_linear, ‘class A‘]]

1.243

13083

\[ {}x^{\prime }+2 t x = {\mathrm e}^{-t^{2}} \]

[_linear]

1.567

13084

\[ {}t x^{\prime } = -x+t^{2} \]

[_linear]

1.555

13085

\[ {}\theta ^{\prime } = -a \theta +{\mathrm e}^{b t} \]

[[_linear, ‘class A‘]]

0.826

13086

\[ {}\left (t^{2}+1\right ) x^{\prime } = -3 t x+6 t \]

[_separable]

1.656

13087

\[ {}x^{\prime }+\frac {5 x}{t} = 1+t \]
i.c.

[_linear]

1.774

13088

\[ {}x^{\prime } = \left (a +\frac {b}{t}\right ) x \]
i.c.

[_separable]

1.047

13089

\[ {}R^{\prime }+\frac {R}{t} = \frac {2}{t^{2}+1} \]
i.c.

[_linear]

1.816

13090

\[ {}N^{\prime } = N-9 \,{\mathrm e}^{-t} \]

[[_linear, ‘class A‘]]

1.345

13091

\[ {}\cos \left (\theta \right ) v^{\prime }+v = 3 \]

[_separable]

2.431

13092

\[ {}R^{\prime } = \frac {R}{t}+t \,{\mathrm e}^{-t} \]
i.c.

[_linear]

1.728

13093

\[ {}y^{\prime }+a y = \sqrt {1+t} \]

[[_linear, ‘class A‘]]

1.172

13094

\[ {}x^{\prime } = 2 t x \]

[_separable]

1.595

13095

\[ {}x^{\prime }+\frac {{\mathrm e}^{-t} x}{t} = t \]
i.c.

[_linear]

2.039

13096

\[ {}x^{\prime \prime }+x^{\prime } = 3 t \]

[[_2nd_order, _missing_y]]

2.063

13097

\[ {}x^{\prime } = \left (t +x\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

1.709

13098

\[ {}x^{\prime } = a x+b \]

[_quadrature]

0.709

13099

\[ {}x^{\prime }+p \left (t \right ) x = 0 \]

[_separable]

1.036

13100

\[ {}x^{\prime } = \frac {2 x}{3 t}+\frac {2 t}{x} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4.322