2.2.117 Problems 11601 to 11700

Table 2.235: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

11601

\[ {}y^{\prime \prime }+6 a^{10} y^{11}-y = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.994

11602

\[ {}y^{\prime \prime }-\frac {1}{\left (a y^{2}+b x y+c \,x^{2}+\alpha y+\beta x +\gamma \right )^{{3}/{2}}} = 0 \]

[NONE]

0.302

11603

\[ {}y^{\prime \prime }-{\mathrm e}^{y} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

35.629

11604

\[ {}y^{\prime \prime }+a \,{\mathrm e}^{x} \sqrt {y} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.174

11605

\[ {}y^{\prime \prime }+{\mathrm e}^{x} \sin \left (y\right ) = 0 \]

[NONE]

0.244

11606

\[ {}y^{\prime \prime }+a \sin \left (y\right ) = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.029

11607

\[ {}y^{\prime \prime }+a^{2} \sin \left (y\right )-\beta \sin \left (x \right ) = 0 \]

[NONE]

0.644

11608

\[ {}y^{\prime \prime }+a^{2} \sin \left (y\right )-\beta f \left (x \right ) = 0 \]

[NONE]

0.516

11609

\[ {}y^{\prime \prime } = \frac {f \left (\frac {y}{\sqrt {x}}\right )}{x^{{3}/{2}}} \]

[[_2nd_order, _with_linear_symmetries]]

0.340

11610

\[ {}y^{\prime \prime }-3 y^{\prime }-y^{2}-2 y = 0 \]

[[_2nd_order, _missing_x]]

1.560

11611

\[ {}y^{\prime \prime }-7 y^{\prime }-y^{{3}/{2}}+12 y = 0 \]

[[_2nd_order, _missing_x]]

5.280

11612

\[ {}y^{\prime \prime }+5 a y^{\prime }-6 y^{2}+6 a^{2} y = 0 \]

[[_2nd_order, _missing_x]]

1.989

11613

\[ {}y^{\prime \prime }+3 a y^{\prime }-2 y^{3}+2 a^{2} y = 0 \]

[[_2nd_order, _missing_x]]

2.303

11614

\[ {}y^{\prime \prime }-\frac {\left (3 n +4\right ) y^{\prime }}{n}-\frac {2 \left (n +1\right ) \left (n +2\right ) y \left (y^{\frac {n}{n +1}}-1\right )}{n^{2}} = 0 \]

[[_2nd_order, _missing_x]]

125.833

11615

\[ {}y^{\prime \prime }+a y^{\prime }+b y^{n}+\frac {\left (a^{2}-1\right ) y}{4} = 0 \]

[[_2nd_order, _missing_x]]

4.382

11616

\[ {}y^{\prime \prime }+a y^{\prime }+b \,x^{v} y^{n} = 0 \]

[NONE]

0.151

11617

\[ {}y^{\prime \prime }+a y^{\prime }+b \,{\mathrm e}^{y}-2 a = 0 \]

[[_2nd_order, _missing_x]]

3.223

11618

\[ {}y^{\prime \prime }+a y^{\prime }+f \left (x \right ) \sin \left (y\right ) = 0 \]

[NONE]

0.319

11619

\[ {}y^{\prime \prime }+y y^{\prime }-y^{3} = 0 \]

[[_2nd_order, _missing_x]]

18.957

11620

\[ {}y^{\prime \prime }+y y^{\prime }-y^{3}+a y = 0 \]

[[_2nd_order, _missing_x]]

4.429

11621

\[ {}y^{\prime \prime }+\left (y+3 a \right ) y^{\prime }-y^{3}+a y^{2}+2 a^{2} y = 0 \]

[[_2nd_order, _missing_x]]

4.059

11622

\[ {}y^{\prime \prime }+\left (y+3 f \left (x \right )\right ) y^{\prime }-y^{3}+y^{2} f \left (x \right )+y \left (f^{\prime }\left (x \right )+2 f \left (x \right )^{2}\right ) = 0 \]

[NONE]

0.214

11623

\[ {}y^{\prime \prime }+y y^{\prime }-y^{3}-\left (\frac {f^{\prime }\left (x \right )}{f \left (x \right )}+f \left (x \right )\right ) \left (3 y^{\prime }+y^{2}\right )+\left (a f \left (x \right )^{2}+3 f^{\prime }\left (x \right )+\frac {3 {f^{\prime }\left (x \right )}^{2}}{f \left (x \right )^{2}}-\frac {f^{\prime \prime }\left (x \right )}{f \left (x \right )}\right ) y+b f \left (x \right )^{3} = 0 \]

[NONE]

0.578

11624

\[ {}y^{\prime \prime }+\left (y-\frac {3 f^{\prime }\left (x \right )}{2 f \left (x \right )}\right ) y^{\prime }-y^{3}-\frac {f^{\prime }\left (x \right ) y^{2}}{2 f \left (x \right )}+\frac {\left (f \left (x \right )+\frac {{f^{\prime }\left (x \right )}^{2}}{f \left (x \right )^{2}}-f^{\prime \prime }\left (x \right )\right ) y}{2 f \left (x \right )} = 0 \]

[NONE]

0.503

11625

\[ {}y^{\prime \prime }+2 y y^{\prime }+f \left (x \right ) y^{\prime }+f^{\prime }\left (x \right ) y = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

2.292

11626

\[ {}y^{\prime \prime }+2 y y^{\prime }+f \left (x \right ) \left (y^{\prime }+y^{2}\right )-g \left (x \right ) = 0 \]

[[_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.206

11627

\[ {}y^{\prime \prime }+3 y y^{\prime }+y^{3}+f \left (x \right ) y-g \left (x \right ) = 0 \]

[NONE]

0.203

11628

\[ {}y^{\prime \prime }+\left (3 y+f \left (x \right )\right ) y^{\prime }+y^{3}+y^{2} f \left (x \right ) = 0 \]

[[_2nd_order, _with_potential_symmetries]]

0.193

11629

\[ {}y^{\prime \prime }-3 y y^{\prime }-3 a y^{2}-4 a^{2} y-b = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

3.011

11630

\[ {}y^{\prime \prime }-\left (3 y+f \left (x \right )\right ) y^{\prime }+y^{3}+y^{2} f \left (x \right ) = 0 \]

[[_2nd_order, _with_potential_symmetries]]

0.197

11631

\[ {}y^{\prime \prime }-2 a y y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.674

11632

\[ {}y^{\prime \prime }+a y y^{\prime }+b y^{3} = 0 \]

[[_2nd_order, _missing_x]]

43.683

11633

\[ {}y^{\prime \prime }+f \left (x , y\right ) y^{\prime }+g \left (x , y\right ) = 0 \]

[NONE]

0.145

11634

\[ {}y^{\prime \prime }+a {y^{\prime }}^{2}+b y = 0 \]

[[_2nd_order, _missing_x]]

0.989

11635

\[ {}y^{\prime \prime }+a y^{\prime } {| y^{\prime }|}+b y^{\prime }+c y = 0 \]

[[_2nd_order, _missing_x]]

1.701

11636

\[ {}y^{\prime \prime }+a {y^{\prime }}^{2}+b y^{\prime }+c y = 0 \]

[[_2nd_order, _missing_x]]

1.683

11637

\[ {}y^{\prime \prime }+a {y^{\prime }}^{2}+b \sin \left (y\right ) = 0 \]

[[_2nd_order, _missing_x]]

4.235

11638

\[ {}y^{\prime \prime }+a y^{\prime } {| y^{\prime }|}+b \sin \left (y\right ) = 0 \]

[[_2nd_order, _missing_x]]

3.080

11639

\[ {}y^{\prime \prime }+a y {y^{\prime }}^{2}+b y = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.174

11640

\[ {}y^{\prime \prime }+f \left (y\right ) {y^{\prime }}^{2}+g \left (x \right ) y^{\prime } = 0 \]

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.441

11641

\[ {}y^{\prime \prime }-\frac {D\left (f \right )\left (y\right ) {y^{\prime }}^{3}}{f \left (y\right )}+g \left (x \right ) y^{\prime }+h \left (x \right ) f \left (y\right ) = 0 \]

[NONE]

0.250

11642

\[ {}y^{\prime \prime }+\phi \left (y\right ) {y^{\prime }}^{2}+f \left (x \right ) y^{\prime }+g \left (x \right ) \Phi \left (y\right ) = 0 \]

[NONE]

0.244

11643

\[ {}y^{\prime \prime }+f \left (y\right ) {y^{\prime }}^{2}+g \left (y\right ) y^{\prime }+h \left (y\right ) = 0 \]

[[_2nd_order, _missing_x]]

1.836

11644

\[ {}y^{\prime \prime }+\left ({y^{\prime }}^{2}+1\right ) \left (f \left (x , y\right ) y^{\prime }+g \left (x , y\right )\right ) = 0 \]

[NONE]

0.163

11645

\[ {}y^{\prime \prime }+a y \left ({y^{\prime }}^{2}+1\right )^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.694

11646

\[ {}y^{\prime \prime }-a \left (-y+y^{\prime } x \right )^{v} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.208

11647

\[ {}y^{\prime \prime }-k \,x^{a} y^{b} {y^{\prime }}^{r} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.171

11648

\[ {}y^{\prime \prime }+\left (y^{\prime }-\frac {y}{x}\right )^{a} f \left (x , y\right ) = 0 \]

[NONE]

0.259

11649

\[ {}y^{\prime \prime } = a \sqrt {{y^{\prime }}^{2}+1} \]

[[_2nd_order, _missing_x]]

5.923

11650

\[ {}y^{\prime \prime } = a \sqrt {{y^{\prime }}^{2}+1}+b \]

[[_2nd_order, _missing_x]]

2.708

11651

\[ {}y^{\prime \prime } = a \sqrt {{y^{\prime }}^{2}+b y^{2}} \]

[[_2nd_order, _missing_x]]

2.127

11652

\[ {}y^{\prime \prime } = a \left ({y^{\prime }}^{2}+1\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

3.229

11653

\[ {}y^{\prime \prime }-2 a x \left ({y^{\prime }}^{2}+1\right )^{{3}/{2}} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

2.512

11654

\[ {}y^{\prime \prime }-a y \left ({y^{\prime }}^{2}+1\right )^{{3}/{2}} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

7.556

11655

\[ {}y^{\prime \prime } = 2 a \left (c +b x +y\right ) \left ({y^{\prime }}^{2}+1\right )^{{3}/{2}} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.276

11656

\[ {}y^{\prime \prime }+y^{3} y^{\prime }-y y^{\prime } \sqrt {y^{4}+4 y^{\prime }} = 0 \]

[[_2nd_order, _missing_x]]

3.648

11657

\[ {}y^{\prime \prime }-f \left (y^{\prime }, a x +b y\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.145

11658

\[ {}y^{\prime \prime }-y f \left (x , \frac {y^{\prime }}{y}\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.146

11659

\[ {}y^{\prime \prime }-x^{n -2} f \left (y x^{-n}, y^{\prime } x^{-n +1}\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.223

11660

\[ {}8 y^{\prime \prime }+9 {y^{\prime }}^{4} = 0 \]

[[_2nd_order, _missing_x]]

2.463

11661

\[ {}a y^{\prime \prime }+h \left (y^{\prime }\right )+c y = 0 \]

[[_2nd_order, _missing_x]]

2.342

11662

\[ {}x y^{\prime \prime }+2 y^{\prime }-x y^{n} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.142

11663

\[ {}x y^{\prime \prime }+2 y^{\prime }+a \,x^{v} y^{n} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.155

11664

\[ {}x y^{\prime \prime }+2 y^{\prime }+x \,{\mathrm e}^{y} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.146

11665

\[ {}x y^{\prime \prime }+a y^{\prime }+b x \,{\mathrm e}^{y} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.149

11666

\[ {}x y^{\prime \prime }+a y^{\prime }+b \,x^{5-2 a} {\mathrm e}^{y} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.183

11667

\[ {}x y^{\prime \prime }+\left (-1+y\right ) y^{\prime } = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.535

11668

\[ {}x y^{\prime \prime }-x^{2} {y^{\prime }}^{2}+2 y^{\prime }+y^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.146

11669

\[ {}x y^{\prime \prime }+a \left (-y+y^{\prime } x \right )^{2}-b = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.149

11670

\[ {}2 x y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.584

11671

\[ {}x^{2} y^{\prime \prime } = a \left (y^{n}-y\right ) \]

[[_2nd_order, _with_linear_symmetries]]

0.149

11672

\[ {}x^{2} y^{\prime \prime }+a \left ({\mathrm e}^{y}-1\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.157

11673

\[ {}x^{2} y^{\prime \prime }-\left (2 a +b -1\right ) x y^{\prime }+\left (c^{2} b^{2} x^{2 b}+a \left (a +b \right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.555

11674

\[ {}x^{2} y^{\prime \prime }+\left (a +1\right ) x y^{\prime }-x^{k} f \left (x^{k} y, y^{\prime } x +k y\right ) = 0 \]

[NONE]

0.211

11675

\[ {}x^{2} y^{\prime \prime }+a \left (-y+y^{\prime } x \right )^{2}-b \,x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.148

11676

\[ {}x^{2} y^{\prime \prime }+a y {y^{\prime }}^{2}+b x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.130

11677

\[ {}x^{2} y^{\prime \prime }-\sqrt {a \,x^{2} {y^{\prime }}^{2}+b y^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.270

11678

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.719

11679

\[ {}4 x^{2} y^{\prime \prime }-x^{4} {y^{\prime }}^{2}+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.133

11680

\[ {}9 x^{2} y^{\prime \prime }+a y^{3}+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.174

11681

\[ {}x^{3} \left (y^{\prime \prime }+y y^{\prime }-y^{3}\right )+12 x y+24 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.161

11682

\[ {}x^{3} y^{\prime \prime }-a \left (-y+y^{\prime } x \right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.160

11683

\[ {}2 x^{3} y^{\prime \prime }+x^{2} \left (9+2 x y\right ) y^{\prime }+b +x y \left (a +3 x y-2 x^{2} y^{2}\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.167

11684

\[ {}2 \left (-x^{k}+4 x^{3}\right ) \left (y^{\prime \prime }+y y^{\prime }-y^{3}\right )-\left (k \,x^{k -1}-12 x^{2}\right ) \left (3 y^{\prime }+y^{2}\right )+y a x +b = 0 \]

[NONE]

0.283

11685

\[ {}x^{4} y^{\prime \prime }+a^{2} y^{n} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.141

11686

\[ {}x^{4} y^{\prime \prime }-x \left (x^{2}+2 y\right ) y^{\prime }+4 y^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.145

11687

\[ {}x^{4} y^{\prime \prime }-x^{2} \left (x +y^{\prime }\right ) y^{\prime }+4 y^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.151

11688

\[ {}x^{4} y^{\prime \prime }+\left (-y+y^{\prime } x \right )^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.140

11689

\[ {}y^{\prime \prime } \sqrt {x}-y^{{3}/{2}} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.161

11690

\[ {}\left (a \,x^{2}+b x +c \right )^{{3}/{2}} y^{\prime \prime }-F \left (\frac {y}{\sqrt {a \,x^{2}+b x +c}}\right ) = 0 \]

[NONE]

8.091

11691

\[ {}x^{\frac {n}{n +1}} y^{\prime \prime }-y^{\frac {2 n +1}{n +1}} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.200

11692

\[ {}f \left (x \right )^{2} y^{\prime \prime }+f \left (x \right ) f^{\prime }\left (x \right ) y^{\prime }-h \left (y, f \left (x \right ) y^{\prime }\right ) = 0 \]

[NONE]

0.227

11693

\[ {}y^{\prime \prime } y-a = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.540

11694

\[ {}y^{\prime \prime } y-a x = 0 \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.120

11695

\[ {}y^{\prime \prime } y-a \,x^{2} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.124

11696

\[ {}y^{\prime \prime } y+{y^{\prime }}^{2}-a = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.632

11697

\[ {}y^{\prime \prime } y+y^{2}-a x -b = 0 \]

[NONE]

0.136

11698

\[ {}y^{\prime \prime } y+{y^{\prime }}^{2}-y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.613

11699

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.060

11700

\[ {}y^{\prime \prime } y-{y^{\prime }}^{2}-1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.809