2.2.111 Problems 11001 to 11100

Table 2.223: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

11001

\[ {}y^{\prime } = -F \left (x \right ) \left (x^{2}+2 x y-y^{2}\right )+\frac {y}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

2.654

11002

\[ {}y^{\prime } = -F \left (x \right ) \left (-7 x y^{2}-x^{3}\right )+\frac {y}{x} \]

[[_homogeneous, ‘class D‘], _Riccati]

2.216

11003

\[ {}y^{\prime } = -F \left (x \right ) \left (-y^{2}-2 y \ln \left (x \right )-\ln \left (x \right )^{2}\right )+\frac {y}{\ln \left (x \right ) x} \]

[_Riccati]

2.836

11004

\[ {}y^{\prime } = -x^{3} \left (-y^{2}-2 y \ln \left (x \right )-\ln \left (x \right )^{2}\right )+\frac {y}{\ln \left (x \right ) x} \]

[_Riccati]

3.403

11005

\[ {}y^{\prime } = \left (y-{\mathrm e}^{x}\right )^{2}+{\mathrm e}^{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

1.658

11006

\[ {}y^{\prime } = \frac {\left (y-\operatorname {Si}\left (x \right )\right )^{2}+\sin \left (x \right )}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

6.385

11007

\[ {}y^{\prime } = \left (y+\cos \left (x \right )\right )^{2}+\sin \left (x \right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

2.354

11008

\[ {}y^{\prime } = \frac {\left (y-\ln \left (x \right )-\operatorname {Ci}\left (x \right )\right )^{2}+\cos \left (x \right )}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

52.435

11009

\[ {}y^{\prime } = \frac {\left (y-x +\ln \left (x +1\right )\right )^{2}+x}{x +1} \]

[[_1st_order, _with_linear_symmetries], _Riccati]

2.269

11010

\[ {}y^{\prime } = \frac {2 x^{2} y+x^{3}+y \ln \left (x \right ) x -y^{2}-x y}{x^{2} \left (x +\ln \left (x \right )\right )} \]

[_Riccati]

2.670

11011

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

2.078

11012

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2.210

11013

\[ {}y^{\prime \prime }+y-\sin \left (n x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.490

11014

\[ {}y^{\prime \prime }+y-a \cos \left (b x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.607

11015

\[ {}y^{\prime \prime }+y-\sin \left (a x \right ) \sin \left (b x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

12.971

11016

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

2.253

11017

\[ {}y^{\prime \prime }-2 y-4 x^{2} {\mathrm e}^{x^{2}} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.544

11018

\[ {}y^{\prime \prime }+a^{2} y-\cot \left (a x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.798

11019

\[ {}y^{\prime \prime }+l y = 0 \]

[[_2nd_order, _missing_x]]

3.139

11020

\[ {}y^{\prime \prime }+\left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.671

11021

\[ {}y^{\prime \prime }-\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.855

11022

\[ {}y^{\prime \prime }-\left (x^{2}+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.393

11023

\[ {}y^{\prime \prime }-\left (a^{2} x^{2}+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.922

11024

\[ {}y^{\prime \prime }-c \,x^{a} y = 0 \]

[[_Emden, _Fowler]]

0.856

11025

\[ {}y^{\prime \prime }-\left (a^{2} x^{2 n}-1\right ) y = 0 \]

[_Titchmarsh]

0.262

11026

\[ {}y^{\prime \prime }+\left (a \,x^{2 c}+b \,x^{c -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.274

11027

\[ {}y^{\prime \prime }+\left ({\mathrm e}^{2 x}-v^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.707

11028

\[ {}y^{\prime \prime }+a \,{\mathrm e}^{b x} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.733

11029

\[ {}y^{\prime \prime }-\left (4 a^{2} b^{2} x^{2} {\mathrm e}^{2 b \,x^{2}}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.305

11030

\[ {}y^{\prime \prime }+\left (a \,{\mathrm e}^{2 x}+b \,{\mathrm e}^{x}+c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.313

11031

\[ {}y^{\prime \prime }+\left (a \cosh \left (x \right )^{2}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.732

11032

\[ {}y^{\prime \prime }+\left (a \cos \left (2 x \right )+b \right ) y = 0 \]

[_ellipsoidal]

0.638

11033

\[ {}y^{\prime \prime }+\left (a \cos \left (x \right )^{2}+b \right ) y = 0 \]

[_ellipsoidal]

0.856

11034

\[ {}y^{\prime \prime }-\left (1+2 \tan \left (x \right )^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.819

11035

\[ {}y^{\prime \prime }-\left (\frac {m \left (m -1\right )}{\cos \left (x \right )^{2}}+\frac {n \left (n -1\right )}{\sin \left (x \right )^{2}}+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

5.550

11036

\[ {}y^{\prime \prime }-\left (n \left (n +1\right ) \operatorname {WeierstrassP}\left (x , \operatorname {g2} , \operatorname {g3}\right )+B \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.256

11037

\[ {}y^{\prime \prime }-\left (n \left (n +1\right ) k^{2} \operatorname {JacobiSN}\left (x , k\right )^{2}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.299

11038

\[ {}y^{\prime \prime }-\left (\frac {p^{\prime \prime \prime \prime }\left (x \right )}{30}+\frac {7 p^{\prime \prime }\left (x \right )}{3}+a p \left (x \right )+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.711

11039

\[ {}y^{\prime \prime }-\left (f \left (x \right )^{2}+f^{\prime }\left (x \right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.307

11040

\[ {}y^{\prime \prime }+\left (P \left (x \right )+l \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.266

11041

\[ {}y^{\prime \prime }-f \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.231

11042

\[ {}y^{\prime \prime }+y^{\prime }+a \,{\mathrm e}^{-2 x} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.539

11043

\[ {}y^{\prime \prime }-y^{\prime }+{\mathrm e}^{2 x} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.036

11044

\[ {}y^{\prime \prime }+a y^{\prime }+b y = 0 \]

[[_2nd_order, _missing_x]]

3.090

11045

\[ {}y^{\prime \prime }+a y^{\prime }+b y-f \left (x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.605

11046

\[ {}y^{\prime \prime }+a y^{\prime }-\left (b^{2} x^{2}+c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.586

11047

\[ {}y^{\prime \prime }+2 a y^{\prime }+f \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.334

11048

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.144

11049

\[ {}y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.454

11050

\[ {}y^{\prime \prime }+y^{\prime } x +\left (n +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.516

11051

\[ {}y^{\prime \prime }+y^{\prime } x -n y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.528

11052

\[ {}y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[_Hermite]

1.257

11053

\[ {}y^{\prime \prime }-y^{\prime } x -a y = 0 \]

[_Hermite]

0.537

11054

\[ {}y^{\prime \prime }-y^{\prime } x +\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.290

11055

\[ {}y^{\prime \prime }-2 y^{\prime } x +a y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.527

11056

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.698

11057

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (3 x^{2}+2 n -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.565

11058

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-1\right ) y-{\mathrm e}^{x} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.812

11059

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.760

11060

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-3\right ) y-{\mathrm e}^{x^{2}} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.170

11061

\[ {}y^{\prime \prime }+a x y^{\prime }+b y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.605

11062

\[ {}y^{\prime \prime }+2 a x y^{\prime }+a^{2} x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

33.371

11063

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.787

11064

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (\operatorname {a1} \,x^{2}+\operatorname {b1} x +\operatorname {c1} \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.474

11065

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.544

11066

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-\left (x +1\right )^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.336

11067

\[ {}y^{\prime \prime }-x^{2} \left (x +1\right ) y^{\prime }+x \left (x^{4}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.257

11068

\[ {}y^{\prime \prime }+x^{4} y^{\prime }-x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.750

11069

\[ {}y^{\prime \prime }+a \,x^{q -1} y^{\prime }+b \,x^{q -2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.600

11070

\[ {}y^{\prime \prime }+y^{\prime } \sqrt {x}+\left (\frac {1}{4 \sqrt {x}}+\frac {x}{4}-9\right ) y-x \,{\mathrm e}^{-\frac {x^{{3}/{2}}}{3}} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.632

11071

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.278

11072

\[ {}y^{\prime \prime }-\left (2 \,{\mathrm e}^{x}+1\right ) y^{\prime }+{\mathrm e}^{2 x} y-{\mathrm e}^{3 x} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.656

11073

\[ {}y^{\prime \prime }+a y^{\prime }+\tan \left (x \right )+b y = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

26.655

11074

\[ {}y^{\prime \prime }+2 n y^{\prime } \cot \left (x \right )+\left (-a^{2}+n^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.686

11075

\[ {}y^{\prime \prime }+y^{\prime } \tan \left (x \right )+y \cos \left (x \right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3.439

11076

\[ {}y^{\prime \prime }+y^{\prime } \tan \left (x \right )-y \cos \left (x \right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.893

11077

\[ {}y^{\prime \prime }+y^{\prime } \cot \left (x \right )+v \left (v +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.286

11078

\[ {}y^{\prime \prime }-y^{\prime } \cot \left (x \right )+y \sin \left (x \right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.538

11079

\[ {}y^{\prime \prime }+a y^{\prime } \tan \left (x \right )+b y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.452

11080

\[ {}y^{\prime \prime }+2 a y^{\prime } \cot \left (a x \right )+\left (-a^{2}+b^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.846

11081

\[ {}y^{\prime \prime }+a p^{\prime \prime }\left (x \right ) y^{\prime }+\left (a +b p \left (x \right )-4 n a p \left (x \right )^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.835

11082

\[ {}y^{\prime \prime }+\frac {\left (11 \operatorname {WeierstrassP}\left (x , a , b\right ) \operatorname {WeierstrassPPrime}\left (x , a , b\right )-6 \operatorname {WeierstrassP}\left (x , a , b\right )^{2}+\frac {a}{2}\right ) y^{\prime }}{\operatorname {WeierstrassPPrime}\left (x , a , b\right )+\operatorname {WeierstrassP}\left (x , a , b\right )^{2}}+\frac {\left (\operatorname {WeierstrassPPrime}\left (x , a , b\right )^{2}-\operatorname {WeierstrassP}\left (x , a , b\right )^{2} \operatorname {WeierstrassPPrime}\left (x , a , b\right )-\operatorname {WeierstrassP}\left (x , a , b\right ) \left (6 \operatorname {WeierstrassP}\left (x , a , b\right )^{2}-\frac {a}{2}\right )\right ) y}{\operatorname {WeierstrassPPrime}\left (x , a , b\right )+\operatorname {WeierstrassP}\left (x , a , b\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

42.473

11083

\[ {}y^{\prime \prime }+f \left (x \right ) y^{\prime }+g \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.488

11084

\[ {}y^{\prime \prime }+f \left (x \right ) y^{\prime }+\left (f^{\prime }\left (x \right )+a \right ) y-g \left (x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.417

11085

\[ {}y^{\prime \prime }+\left (a f \left (x \right )+b \right ) y^{\prime }+\left (c f \left (x \right )+d \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.503

11086

\[ {}y^{\prime \prime }+f \left (x \right ) y^{\prime }+\left (\frac {f \left (x \right )^{2}}{4}+\frac {f^{\prime }\left (x \right )}{2}+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3.151

11087

\[ {}y^{\prime \prime }-\frac {a f^{\prime }\left (x \right ) y^{\prime }}{f \left (x \right )}+b f \left (x \right )^{2 a} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.525

11088

\[ {}y^{\prime \prime }-\left (\frac {f^{\prime }\left (x \right )}{f \left (x \right )}+2 a \right ) y^{\prime }+\left (\frac {a f^{\prime }\left (x \right )}{f \left (x \right )}+a^{2}-b^{2} f \left (x \right )^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.014

11089

\[ {}y^{\prime \prime }+\frac {f \left (x \right ) f^{\prime \prime \prime }\left (x \right ) y^{\prime }}{f \left (x \right )^{2}+b^{2}}-\frac {a^{2} {f^{\prime }\left (x \right )}^{2} y}{f \left (x \right )^{2}+b^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.241

11090

\[ {}y^{\prime \prime }-\left (\frac {2 f^{\prime }\left (x \right )}{f \left (x \right )}+\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}-\frac {g^{\prime }\left (x \right )}{g \left (x \right )}\right ) y^{\prime }+\left (\frac {f^{\prime }\left (x \right ) \left (\frac {2 f^{\prime }\left (x \right )}{f \left (x \right )}+\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}-\frac {g^{\prime }\left (x \right )}{g \left (x \right )}\right )}{f \left (x \right )}-\frac {f^{\prime \prime }\left (x \right )}{f \left (x \right )}-\frac {v^{2} {g^{\prime }\left (x \right )}^{2}}{g \left (x \right )^{2}}+{g^{\prime }\left (x \right )}^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.844

11091

\[ {}y^{\prime \prime }-\left (\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}+\frac {\left (2 v -1\right ) g^{\prime }\left (x \right )}{g \left (x \right )}+\frac {2 h^{\prime }\left (x \right )}{h \left (x \right )}\right ) y^{\prime }+\left (\frac {h^{\prime }\left (x \right ) \left (\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}+\frac {\left (2 v -1\right ) g^{\prime }\left (x \right )}{g \left (x \right )}+\frac {2 h^{\prime }\left (x \right )}{h \left (x \right )}\right )}{h \left (x \right )}-\frac {h^{\prime \prime }\left (x \right )}{h \left (x \right )}+{g^{\prime }\left (x \right )}^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.855

11092

\[ {}4 y^{\prime \prime }+9 x y = 0 \]

[[_Emden, _Fowler]]

1.005

11093

\[ {}4 y^{\prime \prime }-\left (x^{2}+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.388

11094

\[ {}4 y^{\prime \prime }+4 y^{\prime } \tan \left (x \right )-\left (5 \tan \left (x \right )^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.941

11095

\[ {}a y^{\prime \prime }-\left (a b +c +x \right ) y^{\prime }+\left (b \left (x +c \right )+d \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.918

11096

\[ {}a^{2} y^{\prime \prime }+a \left (a^{2}-2 b \,{\mathrm e}^{-a x}\right ) y^{\prime }+b^{2} {\mathrm e}^{-2 a x} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.569

11097

\[ {}x \left (y^{\prime \prime }+y\right )-\cos \left (x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.938

11098

\[ {}x y^{\prime \prime }+\left (x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.486

11099

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.864

11100

\[ {}x y^{\prime \prime }+y^{\prime }+a y = 0 \]

[[_Emden, _Fowler]]

0.770