# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}{y^{\prime }}^{2}-2 y y^{\prime }-2 x = 0
\] |
[_dAlembert] |
✓ |
44.839 |
|
\[
{}{y^{\prime }}^{2}-\left (4 y+1\right ) y^{\prime }+\left (4 y+1\right ) y = 0
\] |
[_quadrature] |
✓ |
1.090 |
|
\[
{}{y^{\prime }}^{2}+a y y^{\prime }-b x -c = 0
\] |
[_dAlembert] |
✓ |
1.175 |
|
\[
{}{y^{\prime }}^{2}+\left (b x +a y\right ) y^{\prime }+a b x y = 0
\] |
[_quadrature] |
✓ |
0.867 |
|
\[
{}{y^{\prime }}^{2}-x y y^{\prime }+y^{2} \ln \left (a y\right ) = 0
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
✓ |
4.466 |
|
\[
{}{y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right )-y^{2} = 0
\] |
[_separable] |
✓ |
1.132 |
|
\[
{}{y^{\prime }}^{2}+2 f \left (x \right ) y y^{\prime }+g \left (x \right ) y^{2}+h \left (x \right ) = 0
\] |
[‘y=_G(x,y’)‘] |
✓ |
20.208 |
|
\[
{}{y^{\prime }}^{2}+y \left (y-x \right ) y^{\prime }-x y^{3} = 0
\] |
[_separable] |
✓ |
2.814 |
|
\[
{}{y^{\prime }}^{2}-2 x^{3} y^{2} y^{\prime }-4 x^{2} y^{3} = 0
\] |
[[_1st_order, _with_linear_symmetries]] |
✓ |
2.715 |
|
\[
{}{y^{\prime }}^{2}-3 x y^{{2}/{3}} y^{\prime }+9 y^{{5}/{3}} = 0
\] |
[[_1st_order, _with_linear_symmetries]] |
✓ |
4.609 |
|
\[
{}2 {y^{\prime }}^{2}+\left (x -1\right ) y^{\prime }-y = 0
\] |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
0.410 |
|
\[
{}2 {y^{\prime }}^{2}-2 x^{2} y^{\prime }+3 x y = 0
\] |
[[_homogeneous, ‘class G‘]] |
✓ |
2.685 |
|
\[
{}3 {y^{\prime }}^{2}-2 y^{\prime } x +y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
0.376 |
|
\[
{}3 {y^{\prime }}^{2}+4 y^{\prime } x -y+x^{2} = 0
\] |
[[_homogeneous, ‘class G‘]] |
✓ |
2.525 |
|
\[
{}a {y^{\prime }}^{2}+b y^{\prime }-y = 0
\] |
[_quadrature] |
✓ |
0.616 |
|
\[
{}a {y^{\prime }}^{2}+b \,x^{2} y^{\prime }+c x y = 0
\] |
[[_homogeneous, ‘class G‘]] |
✓ |
3.507 |
|
\[
{}a {y^{\prime }}^{2}+y y^{\prime }-x = 0
\] |
[_dAlembert] |
✗ |
648.351 |
|
\[
{}a {y^{\prime }}^{2}-y y^{\prime }-x = 0
\] |
[_dAlembert] |
✗ |
336.165 |
|
\[
{}x {y^{\prime }}^{2}-y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
1.375 |
|
\[
{}x {y^{\prime }}^{2}-2 y+x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
1.849 |
|
\[
{}x {y^{\prime }}^{2}-2 y^{\prime }-y = 0
\] |
[_rational, _dAlembert] |
✓ |
0.906 |
|
\[
{}x {y^{\prime }}^{2}+4 y^{\prime }-2 y = 0
\] |
[_rational, _dAlembert] |
✓ |
1.109 |
|
\[
{}x {y^{\prime }}^{2}+y^{\prime } x -y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
1.810 |
|
\[
{}x {y^{\prime }}^{2}+y y^{\prime }+a = 0
\] |
[[_homogeneous, ‘class G‘], _dAlembert] |
✓ |
0.495 |
|
\[
{}x {y^{\prime }}^{2}+y y^{\prime }-x^{2} = 0
\] |
[[_homogeneous, ‘class G‘]] |
✓ |
2.682 |
|
\[
{}x {y^{\prime }}^{2}+y y^{\prime }+x^{3} = 0
\] |
[[_homogeneous, ‘class G‘]] |
✓ |
3.602 |
|
\[
{}x {y^{\prime }}^{2}+y y^{\prime }-y^{4} = 0
\] |
[[_homogeneous, ‘class G‘]] |
✓ |
14.937 |
|
\[
{}x {y^{\prime }}^{2}+\left (y-3 x \right ) y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
3.742 |
|
\[
{}x {y^{\prime }}^{2}-y y^{\prime }+a = 0
\] |
[[_homogeneous, ‘class G‘], _rational, _Clairaut] |
✓ |
0.376 |
|
\[
{}x {y^{\prime }}^{2}-y y^{\prime }+a y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
4.687 |
|
\[
{}x {y^{\prime }}^{2}+2 y y^{\prime }-x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
1.596 |
|
\[
{}x {y^{\prime }}^{2}-2 y y^{\prime }+a = 0
\] |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
0.509 |
|
\[
{}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
1.349 |
|
\[
{}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
1.509 |
|
\[
{}x {y^{\prime }}^{2}-2 y y^{\prime }+2 y+x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
1.666 |
|
\[
{}x {y^{\prime }}^{2}+a y y^{\prime }+b x = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
2.020 |
|
\[
{}\left (x +1\right ) {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0
\] |
[[_1st_order, _with_linear_symmetries], _rational, _dAlembert] |
✓ |
0.580 |
|
\[
{}\left (1+3 x \right ) {y^{\prime }}^{2}-3 \left (y+2\right ) y^{\prime }+9 = 0
\] |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
0.547 |
|
\[
{}\left (3 x +5\right ) {y^{\prime }}^{2}-\left (3 y+x \right ) y^{\prime }+y = 0
\] |
[[_1st_order, _with_linear_symmetries], _rational, _dAlembert] |
✓ |
0.604 |
|
\[
{}a x {y^{\prime }}^{2}+\left (b x -a y+c \right ) y^{\prime }-b y = 0
\] |
[[_1st_order, _with_linear_symmetries], _rational, _dAlembert] |
✓ |
0.686 |
|
\[
{}a x {y^{\prime }}^{2}-\left (a y+b x -a -b \right ) y^{\prime }+b y = 0
\] |
[[_1st_order, _with_linear_symmetries], _rational, _dAlembert] |
✓ |
0.757 |
|
\[
{}\left (\operatorname {a2} x +\operatorname {c2} \right ) {y^{\prime }}^{2}+\left (\operatorname {a1} x +\operatorname {b1} y+\operatorname {c1} \right ) y^{\prime }+\operatorname {a0} x +\operatorname {b0} y+\operatorname {c0} = 0
\] |
[_rational, _dAlembert] |
✗ |
2.057 |
|
\[
{}x^{2} {y^{\prime }}^{2}-y^{4}+y^{2} = 0
\] |
[_separable] |
✓ |
2.247 |
|
\[
{}\left (y^{\prime } x +a \right )^{2}-2 a y+x^{2} = 0
\] |
[_rational] |
✓ |
82.237 |
|
\[
{}\left (y^{\prime } x +y+2 x \right )^{2}-4 x y-4 x^{2}-4 a = 0
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
✓ |
4.425 |
|
\[
{}y^{\prime }-1 = 0
\] |
[_quadrature] |
✓ |
0.746 |
|
\[
{}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+y \left (1+y\right )-x = 0
\] |
[[_1st_order, _with_linear_symmetries], _rational] |
✓ |
3.508 |
|
\[
{}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2} \left (-x^{2}+1\right )-x^{4} = 0
\] |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✓ |
9.868 |
|
\[
{}x^{2} {y^{\prime }}^{2}-\left (2 x y+a \right ) y^{\prime }+y^{2} = 0
\] |
[[_homogeneous, ‘class G‘], _rational, _Clairaut] |
✓ |
0.678 |
|
\[
{}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0
\] |
[_separable] |
✓ |
4.242 |
|
\[
{}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+3 y^{2} = 0
\] |
[_separable] |
✓ |
0.480 |
|
\[
{}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0
\] |
[_separable] |
✓ |
3.693 |
|
\[
{}x^{2} {y^{\prime }}^{2}-4 x \left (y+2\right ) y^{\prime }+4 y \left (y+2\right ) = 0
\] |
[_separable] |
✓ |
0.740 |
|
\[
{}x^{2} {y^{\prime }}^{2}+\left (x^{2} y-2 x y+x^{3}\right ) y^{\prime }+\left (y^{2}-x^{2} y\right ) \left (1-x \right ) = 0
\] |
[_linear] |
✓ |
3.000 |
|
\[
{}x^{2} {y^{\prime }}^{2}-y \left (y-2 x \right ) y^{\prime }+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
5.944 |
|
\[
{}x^{2} {y^{\prime }}^{2}+\left (a \,x^{2} y^{3}+b \right ) y^{\prime }+a b y^{3} = 0
\] |
[_quadrature] |
✓ |
1.015 |
|
\[
{}\left (x^{2}+1\right ) {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2}-1 = 0
\] |
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut] |
✓ |
0.579 |
|
\[
{}\left (x^{2}-1\right ) {y^{\prime }}^{2}-1 = 0
\] |
[_quadrature] |
✓ |
0.302 |
|
\[
{}\left (x^{2}-1\right ) {y^{\prime }}^{2}-y^{2}+1 = 0
\] |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✓ |
1.017 |
|
\[
{}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+y^{2} = 0
\] |
[_separable] |
✓ |
2.077 |
|
\[
{}\left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 x y y^{\prime }-x^{2} = 0
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
✓ |
27.875 |
|
\[
{}\left (x^{2}+a \right ) {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2}+b = 0
\] |
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut] |
✓ |
1.002 |
|
\[
{}\left (2 x^{2}+1\right ) {y^{\prime }}^{2}+\left (y^{2}+2 x y+x^{2}+2\right ) y^{\prime }+2 y^{2}+1 = 0
\] |
[‘y=_G(x,y’)‘] |
✓ |
71.741 |
|
\[
{}\left (a^{2}-1\right ) x^{2} {y^{\prime }}^{2}+2 x y y^{\prime }-y^{2}+a^{2} x^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
73.536 |
|
\[
{}a \,x^{2} {y^{\prime }}^{2}-2 a x y y^{\prime }+y^{2}-a \left (a -1\right ) x^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
4.201 |
|
\[
{}x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+a = 0
\] |
[[_homogeneous, ‘class G‘]] |
✓ |
5.545 |
|
\[
{}x \left (x^{2}-1\right ) {y^{\prime }}^{2}+2 \left (-x^{2}+1\right ) y y^{\prime }+x y^{2}-x = 0
\] |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✓ |
11.365 |
|
\[
{}x^{4} {y^{\prime }}^{2}-y^{\prime } x -y = 0
\] |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
2.039 |
|
\[
{}x^{2} \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-1 = 0
\] |
[_quadrature] |
✓ |
0.567 |
|
\[
{}{\mathrm e}^{-2 x} {y^{\prime }}^{2}-\left (y^{\prime }-1\right )^{2}+{\mathrm e}^{-2 y} = 0
\] |
[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✓ |
15.526 |
|
\[
{}\left ({y^{\prime }}^{2}+y^{2}\right ) \cos \left (x \right )^{4}-a^{2} = 0
\] |
[‘y=_G(x,y’)‘] |
✓ |
26.383 |
|
\[
{}\operatorname {d0} \left (x \right ) {y^{\prime }}^{2}+2 \operatorname {b0} \left (x \right ) y y^{\prime }+\operatorname {c0} \left (x \right ) y^{2}+2 \operatorname {d0} \left (x \right ) y^{\prime }+2 \operatorname {e0} \left (x \right ) y+\operatorname {f0} \left (x \right ) = 0
\] |
[‘y=_G(x,y’)‘] |
✓ |
265.559 |
|
\[
{}y {y^{\prime }}^{2}-1 = 0
\] |
[_quadrature] |
✓ |
0.634 |
|
\[
{}y {y^{\prime }}^{2}-{\mathrm e}^{2 x} = 0
\] |
[[_1st_order, _with_linear_symmetries]] |
✓ |
1.349 |
|
\[
{}y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
1.913 |
|
\[
{}y {y^{\prime }}^{2}+2 y^{\prime } x -9 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
2.117 |
|
\[
{}y {y^{\prime }}^{2}-2 y^{\prime } x +y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
1.806 |
|
\[
{}y {y^{\prime }}^{2}-4 y^{\prime } x +y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
2.534 |
|
\[
{}y {y^{\prime }}^{2}-4 a^{2} x y^{\prime }+a^{2} y = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
4.704 |
|
\[
{}y {y^{\prime }}^{2}+a x y^{\prime }+b y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
1.722 |
|
\[
{}y {y^{\prime }}^{2}+x^{3} y^{\prime }-x^{2} y = 0
\] |
[[_1st_order, _with_linear_symmetries]] |
✓ |
3.145 |
|
\[
{}y {y^{\prime }}^{2}-\left (y-x \right ) y^{\prime }-x = 0
\] |
[_quadrature] |
✓ |
4.195 |
|
\[
{}\left (x +y\right ) {y^{\prime }}^{2}+2 y^{\prime } x -y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
1.895 |
|
\[
{}\left (y-2 x \right ) {y^{\prime }}^{2}-2 \left (x -1\right ) y^{\prime }+y-2 = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
0.940 |
|
\[
{}2 y {y^{\prime }}^{2}-\left (4 x -5\right ) y^{\prime }+2 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
0.813 |
|
\[
{}4 y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
1.824 |
|
\[
{}9 y {y^{\prime }}^{2}+4 x^{3} y^{\prime }-4 x^{2} y = 0
\] |
[[_1st_order, _with_linear_symmetries]] |
✓ |
3.178 |
|
\[
{}a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
0.962 |
|
\[
{}\left (a y+b \right ) \left (1+{y^{\prime }}^{2}\right )-c = 0
\] |
[_quadrature] |
✓ |
0.977 |
|
\[
{}\left (b_{2} y+a_{2} x +c_{2} \right ) {y^{\prime }}^{2}+\left (a_{1} x +b_{1} y+c_{1} \right ) y^{\prime }+a_{0} x +b_{0} y+c_{0} = 0
\] |
[_rational, _dAlembert] |
✓ |
1178.766 |
|
\[
{}\left (a y-x^{2}\right ) {y^{\prime }}^{2}+2 x y {y^{\prime }}^{2}-y^{2} = 0
\] |
[_rational] |
✓ |
3.477 |
|
\[
{}x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}\right ) y^{\prime }+x y = 0
\] |
[_separable] |
✓ |
5.449 |
|
\[
{}x y {y^{\prime }}^{2}+\left (x^{22}-y^{2}+a \right ) y^{\prime }-x y = 0
\] |
[_rational] |
✓ |
21.610 |
|
\[
{}\left (2 x y-x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+2 x y-y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
4.096 |
|
\[
{}\left (2 x y-x^{2}\right ) {y^{\prime }}^{2}-6 x y y^{\prime }-y^{2}+2 x y = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
72.764 |
|
\[
{}a x y {y^{\prime }}^{2}-\left (a y^{2}+b \,x^{2}+c \right ) y^{\prime }+b x y = 0
\] |
[_rational] |
✓ |
264.797 |
|
\[
{}y^{2} {y^{\prime }}^{2}+y^{2}-a^{2} = 0
\] |
[_quadrature] |
✓ |
4.886 |
|
\[
{}y^{2} {y^{\prime }}^{2}-6 x^{3} y^{\prime }+4 x^{2} y = 0
\] |
[[_1st_order, _with_linear_symmetries]] |
✓ |
3.210 |
|
\[
{}y^{2} {y^{\prime }}^{2}-4 a y y^{\prime }+y^{2}-4 a x +4 a^{2} = 0
\] |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
✓ |
76.389 |
|
\[
{}y^{2} {y^{\prime }}^{2}+2 x y y^{\prime }+a y^{2}+b x +c = 0
\] |
[_rational] |
✓ |
9.196 |
|