2.1.51 Problem 51
Internal
problem
ID
[9122]
Book
:
Second
order
enumerated
odes
Section
:
section
1
Problem
number
:
51
Date
solved
:
Monday, January 27, 2025 at 05:43:58 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
Solve
\begin{align*} y {y^{\prime \prime }}^{3}+y^{3} y^{\prime }&=0 \end{align*}
Factoring the ode gives these factors
\begin{align*}
\tag{1} y &= 0 \\
\tag{2} {y^{\prime \prime }}^{3}+y^{\prime } y^{2} &= 0 \\
\end{align*}
Now each of the above equations is solved in
turn.
Solving equation (1)
Solving for \(y\) from
\begin{align*} y = 0 \end{align*}
Solving gives \(y = 0\)
Solving equation (2)
Solved as second order missing x ode
Time used: 84.304 (sec)
This is missing independent variable second order ode. Solved by reduction of order by using
substitution which makes the dependent variable \(y\) an independent variable. Using
\begin{align*} y' &= p \end{align*}
Then
\begin{align*} y'' &= \frac {dp}{dx}\\ &= \frac {dp}{dy}\frac {dy}{dx}\\ &= p \frac {dp}{dy} \end{align*}
Hence the ode becomes
\begin{align*} p \left (y \right )^{3} \left (\frac {d}{d y}p \left (y \right )\right )^{3}+p \left (y \right ) y^{2} = 0 \end{align*}
Which is now solved as first order ode for \(p(y)\).
Factoring the ode gives these factors
\begin{align*}
\tag{1} p &= 0 \\
\tag{2} {p^{\prime }}^{3} p^{2}+y^{2} &= 0 \\
\end{align*}
Now each of the above equations is solved in
turn.
Solving equation (1)
Solving for \(p\) from
\begin{align*} p = 0 \end{align*}
Solving gives \(p = 0\)
Solving equation (2)
Let \(p=p^{\prime }\) the ode becomes
\begin{align*} p^{3} p^{2}+y^{2} = 0 \end{align*}
Solving for \(p\) from the above results in
\begin{align*}
\tag{1} p &= -\frac {y}{\sqrt {-p}\, p} \\
\tag{2} p &= \frac {y}{\sqrt {-p}\, p} \\
\end{align*}
This has the form
\begin{align*} p=yf(p)+g(p)\tag {*} \end{align*}
Where \(f,g\) are functions of \(p=p'(y)\). Each of the above ode’s is dAlembert ode which is now
solved.
Solving ode 1A
Taking derivative of (*) w.r.t. \(y\) gives
\begin{align*} p &= f+(y f'+g') \frac {dp}{dy}\\ p-f &= (y f'+g') \frac {dp}{dy}\tag {2} \end{align*}
Comparing the form \(p=y f + g\) to (1A) shows that
\begin{align*} f &= \frac {1}{\left (-p \right )^{{3}/{2}}}\\ g &= 0 \end{align*}
Hence (2) becomes
\begin{equation}
\tag{2A} p -\frac {1}{\left (-p \right )^{{3}/{2}}} = \frac {3 y p^{\prime }\left (y \right )}{2 \left (-p \right )^{{5}/{2}}}
\end{equation}
The singular solution is found by setting \(\frac {dp}{dy}=0\) in the above which gives
\begin{align*} p -\frac {1}{\left (-p \right )^{{3}/{2}}} = 0 \end{align*}
No valid singular solutions found.
The general solution is found when \( \frac { \mathop {\mathrm {d}p}}{\mathop {\mathrm {d}y}}\neq 0\). From eq. (2A). This results in
\begin{equation}
\tag{3} p^{\prime }\left (y \right ) = \frac {2 \left (p \left (y \right )-\frac {1}{\left (-p \left (y \right )\right )^{{3}/{2}}}\right ) \left (-p \left (y \right )\right )^{{5}/{2}}}{3 y}
\end{equation}
This ODE is now solved
for \(p \left (y \right )\). No inversion is needed.
The ode
\begin{equation}
p^{\prime }\left (y \right ) = \frac {2 \left (\left (-p \left (y \right )\right )^{{5}/{2}}+1\right ) p \left (y \right )}{3 y}
\end{equation}
is separable as it can be written as
\begin{align*} p^{\prime }\left (y \right )&= \frac {2 \left (\left (-p \left (y \right )\right )^{{5}/{2}}+1\right ) p \left (y \right )}{3 y}\\ &= f(y) g(p) \end{align*}
Where
\begin{align*} f(y) &= \frac {2}{3 y}\\ g(p) &= \left (\left (-p \right )^{{5}/{2}}+1\right ) p \end{align*}
Integrating gives
\begin{align*}
\int { \frac {1}{g(p)} \,dp} &= \int { f(y) \,dy} \\
\int { \frac {1}{\left (\left (-p \right )^{{5}/{2}}+1\right ) p}\,dp} &= \int { \frac {2}{3 y} \,dy} \\
\end{align*}
\[
-\frac {2 \ln \left (p \left (y \right )^{2}-\left (-p \left (y \right )\right )^{{3}/{2}}-p \left (y \right )-\sqrt {-p \left (y \right )}+1\right )}{5}+\ln \left (-p \left (y \right )\right )-\frac {2 \ln \left (\sqrt {-p \left (y \right )}+1\right )}{5}=\ln \left (y^{{2}/{3}}\right )+c_1
\]
We now need to find the singular solutions, these are found by finding for
what values \(g(p)\) is zero, since we had to divide by this above. Solving \(g(p)=0\) or
\[
\left (\left (-p \right )^{{5}/{2}}+1\right ) p=0
\]
for \(p \left (y \right )\) gives
\begin{align*} p \left (y \right )&=0\\ p \left (y \right )&=-\operatorname {RootOf}\left (\textit {\_Z}^{4}-\textit {\_Z}^{3}+\textit {\_Z}^{2}-\textit {\_Z} +1, \operatorname {index} =1\right )^{2}\\ p \left (y \right )&=-\operatorname {RootOf}\left (\textit {\_Z}^{4}-\textit {\_Z}^{3}+\textit {\_Z}^{2}-\textit {\_Z} +1, \operatorname {index} =4\right )^{2} \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be
used.
The solution \(-\operatorname {RootOf}\left (\textit {\_Z}^{4}-\textit {\_Z}^{3}+\textit {\_Z}^{2}-\textit {\_Z} +1, \operatorname {index} =1\right )^{2}\) will not be used
The solution \(-\operatorname {RootOf}\left (\textit {\_Z}^{4}-\textit {\_Z}^{3}+\textit {\_Z}^{2}-\textit {\_Z} +1, \operatorname {index} =4\right )^{2}\) will not be used
Therefore the solutions found are
\begin{align*}
-\frac {2 \ln \left (p \left (y \right )^{2}-\left (-p \left (y \right )\right )^{{3}/{2}}-p \left (y \right )-\sqrt {-p \left (y \right )}+1\right )}{5}+\ln \left (-p \left (y \right )\right )-\frac {2 \ln \left (\sqrt {-p \left (y \right )}+1\right )}{5} &= \ln \left (y^{{2}/{3}}\right )+c_1 \\
p \left (y \right ) &= 0 \\
\end{align*}
Substituing the above solution for \(p\) in (2A) gives
\begin{align*} p = \frac {y}{{\left ({\left ({\operatorname {RootOf}\left (-1+\left (y^{5} {\mathrm e}^{\frac {15 c_1}{2}}+1\right ) \textit {\_Z}^{75}+\left (-15 y^{5} {\mathrm e}^{\frac {15 c_1}{2}}-15\right ) \textit {\_Z}^{70}+\left (105 y^{5} {\mathrm e}^{\frac {15 c_1}{2}}+105\right ) \textit {\_Z}^{65}+\left (-455 y^{5} {\mathrm e}^{\frac {15 c_1}{2}}-455\right ) \textit {\_Z}^{60}+\left (1365 y^{5} {\mathrm e}^{\frac {15 c_1}{2}}+1365\right ) \textit {\_Z}^{55}+\left (-3000 y^{5} {\mathrm e}^{\frac {15 c_1}{2}}-3003\right ) \textit {\_Z}^{50}+\left (4975 y^{5} {\mathrm e}^{\frac {15 c_1}{2}}+5005\right ) \textit {\_Z}^{45}+\left (-6300 y^{5} {\mathrm e}^{\frac {15 c_1}{2}}-6435\right ) \textit {\_Z}^{40}+\left (6075 y^{5} {\mathrm e}^{\frac {15 c_1}{2}}+6435\right ) \textit {\_Z}^{35}+\left (-4375 y^{5} {\mathrm e}^{\frac {15 c_1}{2}}-5005\right ) \textit {\_Z}^{30}+\left (2250 y^{5} {\mathrm e}^{\frac {15 c_1}{2}}+3003\right ) \textit {\_Z}^{25}+\left (-750 y^{5} {\mathrm e}^{\frac {15 c_1}{2}}-1365\right ) \textit {\_Z}^{20}+\left (125 y^{5} {\mathrm e}^{\frac {15 c_1}{2}}+455\right ) \textit {\_Z}^{15}-105 \textit {\_Z}^{10}+15 \textit {\_Z}^{5}\right )}^{5}-1\right )}^{2}\right )}^{{3}/{2}}}\\ \end{align*}
Solving ode 2A
Taking derivative of (*) w.r.t. \(y\) gives
\begin{align*} p &= f+(y f'+g') \frac {dp}{dy}\\ p-f &= (y f'+g') \frac {dp}{dy}\tag {2} \end{align*}
Comparing the form \(p=y f + g\) to (1A) shows that
\begin{align*} f &= -\frac {1}{\left (-p \right )^{{3}/{2}}}\\ g &= 0 \end{align*}
Hence (2) becomes
\begin{equation}
\tag{2A} p +\frac {1}{\left (-p \right )^{{3}/{2}}} = -\frac {3 y p^{\prime }\left (y \right )}{2 \left (-p \right )^{{5}/{2}}}
\end{equation}
The singular solution is found by setting \(\frac {dp}{dy}=0\) in the above which gives
\begin{align*} p +\frac {1}{\left (-p \right )^{{3}/{2}}} = 0 \end{align*}
Solving the above for \(p\) results in
\begin{align*} p_{1} &=-1 \end{align*}
Substituting these in (1A) and keeping singular solution that verifies the ode gives
\begin{align*} p = -y \end{align*}
The general solution is found when \( \frac { \mathop {\mathrm {d}p}}{\mathop {\mathrm {d}y}}\neq 0\). From eq. (2A). This results in
\begin{equation}
\tag{3} p^{\prime }\left (y \right ) = -\frac {2 \left (p \left (y \right )+\frac {1}{\left (-p \left (y \right )\right )^{{3}/{2}}}\right ) \left (-p \left (y \right )\right )^{{5}/{2}}}{3 y}
\end{equation}
This ODE is now solved
for \(p \left (y \right )\). No inversion is needed.
The ode
\begin{equation}
p^{\prime }\left (y \right ) = -\frac {2 \left (\left (-p \left (y \right )\right )^{{5}/{2}}-1\right ) p \left (y \right )}{3 y}
\end{equation}
is separable as it can be written as
\begin{align*} p^{\prime }\left (y \right )&= -\frac {2 \left (\left (-p \left (y \right )\right )^{{5}/{2}}-1\right ) p \left (y \right )}{3 y}\\ &= f(y) g(p) \end{align*}
Where
\begin{align*} f(y) &= -\frac {2}{3 y}\\ g(p) &= \left (\left (-p \right )^{{5}/{2}}-1\right ) p \end{align*}
Integrating gives
\begin{align*}
\int { \frac {1}{g(p)} \,dp} &= \int { f(y) \,dy} \\
\int { \frac {1}{\left (\left (-p \right )^{{5}/{2}}-1\right ) p}\,dp} &= \int { -\frac {2}{3 y} \,dy} \\
\end{align*}
\[
\frac {2 \ln \left (p \left (y \right )^{2}+\left (-p \left (y \right )\right )^{{3}/{2}}-p \left (y \right )+\sqrt {-p \left (y \right )}+1\right )}{5}-\ln \left (-p \left (y \right )\right )+\frac {2 \ln \left (\sqrt {-p \left (y \right )}-1\right )}{5}=\ln \left (\frac {1}{y^{{2}/{3}}}\right )+c_2
\]
We now need to find the singular solutions, these are found by finding for
what values \(g(p)\) is zero, since we had to divide by this above. Solving \(g(p)=0\) or
\[
\left (\left (-p \right )^{{5}/{2}}-1\right ) p=0
\]
for \(p \left (y \right )\) gives
\begin{align*} p \left (y \right )&=-1\\ p \left (y \right )&=0\\ p \left (y \right )&=-\operatorname {RootOf}\left (\textit {\_Z}^{4}+\textit {\_Z}^{3}+\textit {\_Z}^{2}+\textit {\_Z} +1, \operatorname {index} =1\right )^{2}\\ p \left (y \right )&=-\operatorname {RootOf}\left (\textit {\_Z}^{4}+\textit {\_Z}^{3}+\textit {\_Z}^{2}+\textit {\_Z} +1, \operatorname {index} =4\right )^{2} \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and
any initial conditions given. If it does not then the singular solution will not be
used.
The solution \(-\operatorname {RootOf}\left (\textit {\_Z}^{4}+\textit {\_Z}^{3}+\textit {\_Z}^{2}+\textit {\_Z} +1, \operatorname {index} =1\right )^{2}\) will not be used
The solution \(-\operatorname {RootOf}\left (\textit {\_Z}^{4}+\textit {\_Z}^{3}+\textit {\_Z}^{2}+\textit {\_Z} +1, \operatorname {index} =4\right )^{2}\) will not be used
Therefore the solutions found are
\begin{align*}
\frac {2 \ln \left (p \left (y \right )^{2}+\left (-p \left (y \right )\right )^{{3}/{2}}-p \left (y \right )+\sqrt {-p \left (y \right )}+1\right )}{5}-\ln \left (-p \left (y \right )\right )+\frac {2 \ln \left (\sqrt {-p \left (y \right )}-1\right )}{5} &= \ln \left (\frac {1}{y^{{2}/{3}}}\right )+c_2 \\
p \left (y \right ) &= -1 \\
p \left (y \right ) &= 0 \\
\end{align*}
Substituing the above solution for \(p\) in (2A) gives
\begin{align*} p = -\frac {y}{{\left ({\left ({\operatorname {RootOf}\left (\left (y^{5}+{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{75}+\left (15 y^{5}+15 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{70}+\left (105 y^{5}+105 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{65}+\left (455 y^{5}+455 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{60}+\left (1365 y^{5}+1365 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{55}+\left (3000 y^{5}+3003 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{50}+\left (4975 y^{5}+5005 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{45}+\left (6300 y^{5}+6435 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{40}+\left (6075 y^{5}+6435 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{35}+\left (4375 y^{5}+5005 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{30}+\left (2250 y^{5}+3003 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{25}+\left (750 y^{5}+1365 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{20}+\left (125 y^{5}+455 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{15}+105 \,{\mathrm e}^{\frac {15 c_2}{2}} \textit {\_Z}^{10}+15 \,{\mathrm e}^{\frac {15 c_2}{2}} \textit {\_Z}^{5}+{\mathrm e}^{\frac {15 c_2}{2}}\right )}^{5}+1\right )}^{2}\right )}^{{3}/{2}}}\\ p = -y\\ \end{align*}
For solution (1) found earlier, since \(p=y^{\prime }\) then we now have a new first order ode to solve which is
\begin{align*} y^{\prime } = 0 \end{align*}
Since the ode has the form \(y^{\prime }=f(x)\), then we only need to integrate \(f(x)\).
\begin{align*} \int {dy} &= \int {0\, dx} + c_3 \\ y &= c_3 \end{align*}
For solution (2) found earlier, since \(p=y^{\prime }\) then we now have a new first order ode to solve which is
\begin{align*} y^{\prime } = \frac {y}{{\left ({\left ({\operatorname {RootOf}\left (-1+\left (y^{5} {\mathrm e}^{\frac {15 c_1}{2}}+1\right ) \textit {\_Z}^{75}+\left (-15 y^{5} {\mathrm e}^{\frac {15 c_1}{2}}-15\right ) \textit {\_Z}^{70}+\left (105 y^{5} {\mathrm e}^{\frac {15 c_1}{2}}+105\right ) \textit {\_Z}^{65}+\left (-455 y^{5} {\mathrm e}^{\frac {15 c_1}{2}}-455\right ) \textit {\_Z}^{60}+\left (1365 y^{5} {\mathrm e}^{\frac {15 c_1}{2}}+1365\right ) \textit {\_Z}^{55}+\left (-3000 y^{5} {\mathrm e}^{\frac {15 c_1}{2}}-3003\right ) \textit {\_Z}^{50}+\left (4975 y^{5} {\mathrm e}^{\frac {15 c_1}{2}}+5005\right ) \textit {\_Z}^{45}+\left (-6300 y^{5} {\mathrm e}^{\frac {15 c_1}{2}}-6435\right ) \textit {\_Z}^{40}+\left (6075 y^{5} {\mathrm e}^{\frac {15 c_1}{2}}+6435\right ) \textit {\_Z}^{35}+\left (-4375 y^{5} {\mathrm e}^{\frac {15 c_1}{2}}-5005\right ) \textit {\_Z}^{30}+\left (2250 y^{5} {\mathrm e}^{\frac {15 c_1}{2}}+3003\right ) \textit {\_Z}^{25}+\left (-750 y^{5} {\mathrm e}^{\frac {15 c_1}{2}}-1365\right ) \textit {\_Z}^{20}+\left (125 y^{5} {\mathrm e}^{\frac {15 c_1}{2}}+455\right ) \textit {\_Z}^{15}-105 \textit {\_Z}^{10}+15 \textit {\_Z}^{5}\right )}^{5}-1\right )}^{2}\right )}^{{3}/{2}}} \end{align*}
Unable to integrate (or intergal too complicated), and since no initial conditions are given,
then the result can be written as
\[ \int _{}^{y}\frac {{\left ({\left ({\operatorname {RootOf}\left (-1+\left (\tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}+1\right ) \textit {\_Z}^{75}+\left (-15 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}-15\right ) \textit {\_Z}^{70}+\left (105 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}+105\right ) \textit {\_Z}^{65}+\left (-455 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}-455\right ) \textit {\_Z}^{60}+\left (1365 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}+1365\right ) \textit {\_Z}^{55}+\left (-3000 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}-3003\right ) \textit {\_Z}^{50}+\left (4975 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}+5005\right ) \textit {\_Z}^{45}+\left (-6300 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}-6435\right ) \textit {\_Z}^{40}+\left (6075 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}+6435\right ) \textit {\_Z}^{35}+\left (-4375 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}-5005\right ) \textit {\_Z}^{30}+\left (2250 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}+3003\right ) \textit {\_Z}^{25}+\left (-750 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}-1365\right ) \textit {\_Z}^{20}+\left (125 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}+455\right ) \textit {\_Z}^{15}-105 \textit {\_Z}^{10}+15 \textit {\_Z}^{5}\right )}^{5}-1\right )}^{2}\right )}^{{3}/{2}}}{\tau }d \tau = x +c_4 \]
Solving for \(y\) gives
\begin{align*}
y &= \operatorname {RootOf}\left (-\int _{}^{\textit {\_Z}}\frac {{\left ({\left ({\operatorname {RootOf}\left (-1+\left (\tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}+1\right ) \textit {\_Z}^{75}+\left (-15 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}-15\right ) \textit {\_Z}^{70}+\left (105 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}+105\right ) \textit {\_Z}^{65}+\left (-455 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}-455\right ) \textit {\_Z}^{60}+\left (1365 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}+1365\right ) \textit {\_Z}^{55}+\left (-3000 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}-3003\right ) \textit {\_Z}^{50}+\left (4975 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}+5005\right ) \textit {\_Z}^{45}+\left (-6300 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}-6435\right ) \textit {\_Z}^{40}+\left (6075 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}+6435\right ) \textit {\_Z}^{35}+\left (-4375 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}-5005\right ) \textit {\_Z}^{30}+\left (2250 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}+3003\right ) \textit {\_Z}^{25}+\left (-750 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}-1365\right ) \textit {\_Z}^{20}+\left (125 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}+455\right ) \textit {\_Z}^{15}-105 \textit {\_Z}^{10}+15 \textit {\_Z}^{5}\right )}^{5}-1\right )}^{2}\right )}^{{3}/{2}}}{\tau }d \tau +x +c_4 \right ) \\
\end{align*}
For solution (3) found earlier, since \(p=y^{\prime }\)
then we now have a new first order ode to solve which is
\begin{align*} y^{\prime } = -y \end{align*}
Integrating gives
\begin{align*} \int -\frac {1}{y}d y &= dx\\ -\ln \left (y \right )&= x +c_5 \end{align*}
Singular solutions are found by solving
\begin{align*} -y&= 0 \end{align*}
for \(y\). This is because we had to divide by this in the above step. This gives the following
singular solution(s), which also have to satisfy the given ODE.
\begin{align*} y = 0 \end{align*}
Solving for \(y\) gives
\begin{align*}
y &= 0 \\
y &= {\mathrm e}^{-x -c_5} \\
\end{align*}
For solution (4) found earlier, since \(p=y^{\prime }\) then we now have a new first order
ode to solve which is
\begin{align*} y^{\prime } = -\frac {y}{{\left ({\left ({\operatorname {RootOf}\left (\left (y^{5}+{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{75}+\left (15 y^{5}+15 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{70}+\left (105 y^{5}+105 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{65}+\left (455 y^{5}+455 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{60}+\left (1365 y^{5}+1365 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{55}+\left (3000 y^{5}+3003 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{50}+\left (4975 y^{5}+5005 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{45}+\left (6300 y^{5}+6435 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{40}+\left (6075 y^{5}+6435 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{35}+\left (4375 y^{5}+5005 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{30}+\left (2250 y^{5}+3003 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{25}+\left (750 y^{5}+1365 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{20}+\left (125 y^{5}+455 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{15}+105 \,{\mathrm e}^{\frac {15 c_2}{2}} \textit {\_Z}^{10}+15 \,{\mathrm e}^{\frac {15 c_2}{2}} \textit {\_Z}^{5}+{\mathrm e}^{\frac {15 c_2}{2}}\right )}^{5}+1\right )}^{2}\right )}^{{3}/{2}}} \end{align*}
Unable to integrate (or intergal too complicated), and since no initial conditions are given,
then the result can be written as
\[ \int _{}^{y}-\frac {{\left ({\left ({\operatorname {RootOf}\left (\left (\tau ^{5}+{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{75}+\left (15 \tau ^{5}+15 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{70}+\left (105 \tau ^{5}+105 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{65}+\left (455 \tau ^{5}+455 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{60}+\left (1365 \tau ^{5}+1365 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{55}+\left (3000 \tau ^{5}+3003 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{50}+\left (4975 \tau ^{5}+5005 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{45}+\left (6300 \tau ^{5}+6435 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{40}+\left (6075 \tau ^{5}+6435 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{35}+\left (4375 \tau ^{5}+5005 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{30}+\left (2250 \tau ^{5}+3003 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{25}+\left (750 \tau ^{5}+1365 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{20}+\left (125 \tau ^{5}+455 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{15}+105 \,{\mathrm e}^{\frac {15 c_2}{2}} \textit {\_Z}^{10}+15 \,{\mathrm e}^{\frac {15 c_2}{2}} \textit {\_Z}^{5}+{\mathrm e}^{\frac {15 c_2}{2}}\right )}^{5}+1\right )}^{2}\right )}^{{3}/{2}}}{\tau }d \tau = x +c_6 \]
Solving for \(y\) gives
\begin{align*}
y &= \operatorname {RootOf}\left (-\int _{}^{\textit {\_Z}}-\frac {{\left ({\left ({\operatorname {RootOf}\left (\left (\tau ^{5}+{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{75}+\left (15 \tau ^{5}+15 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{70}+\left (105 \tau ^{5}+105 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{65}+\left (455 \tau ^{5}+455 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{60}+\left (1365 \tau ^{5}+1365 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{55}+\left (3000 \tau ^{5}+3003 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{50}+\left (4975 \tau ^{5}+5005 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{45}+\left (6300 \tau ^{5}+6435 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{40}+\left (6075 \tau ^{5}+6435 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{35}+\left (4375 \tau ^{5}+5005 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{30}+\left (2250 \tau ^{5}+3003 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{25}+\left (750 \tau ^{5}+1365 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{20}+\left (125 \tau ^{5}+455 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{15}+105 \,{\mathrm e}^{\frac {15 c_2}{2}} \textit {\_Z}^{10}+15 \,{\mathrm e}^{\frac {15 c_2}{2}} \textit {\_Z}^{5}+{\mathrm e}^{\frac {15 c_2}{2}}\right )}^{5}+1\right )}^{2}\right )}^{{3}/{2}}}{\tau }d \tau +x +c_6 \right ) \\
\end{align*}
Will add steps showing solving for IC
soon.
The solution
\[
y = \operatorname {RootOf}\left (-\int _{}^{\textit {\_Z}}\frac {{\left ({\left ({\operatorname {RootOf}\left (-1+\left (\tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}+1\right ) \textit {\_Z}^{75}+\left (-15 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}-15\right ) \textit {\_Z}^{70}+\left (105 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}+105\right ) \textit {\_Z}^{65}+\left (-455 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}-455\right ) \textit {\_Z}^{60}+\left (1365 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}+1365\right ) \textit {\_Z}^{55}+\left (-3000 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}-3003\right ) \textit {\_Z}^{50}+\left (4975 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}+5005\right ) \textit {\_Z}^{45}+\left (-6300 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}-6435\right ) \textit {\_Z}^{40}+\left (6075 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}+6435\right ) \textit {\_Z}^{35}+\left (-4375 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}-5005\right ) \textit {\_Z}^{30}+\left (2250 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}+3003\right ) \textit {\_Z}^{25}+\left (-750 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}-1365\right ) \textit {\_Z}^{20}+\left (125 \tau ^{5} {\mathrm e}^{\frac {15 c_1}{2}}+455\right ) \textit {\_Z}^{15}-105 \textit {\_Z}^{10}+15 \textit {\_Z}^{5}\right )}^{5}-1\right )}^{2}\right )}^{{3}/{2}}}{\tau }d \tau +x +c_4 \right )
\]
was found not to satisfy the ode or the IC. Hence it is removed. The solution
\[
y = \operatorname {RootOf}\left (-\int _{}^{\textit {\_Z}}-\frac {{\left ({\left ({\operatorname {RootOf}\left (\left (\tau ^{5}+{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{75}+\left (15 \tau ^{5}+15 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{70}+\left (105 \tau ^{5}+105 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{65}+\left (455 \tau ^{5}+455 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{60}+\left (1365 \tau ^{5}+1365 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{55}+\left (3000 \tau ^{5}+3003 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{50}+\left (4975 \tau ^{5}+5005 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{45}+\left (6300 \tau ^{5}+6435 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{40}+\left (6075 \tau ^{5}+6435 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{35}+\left (4375 \tau ^{5}+5005 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{30}+\left (2250 \tau ^{5}+3003 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{25}+\left (750 \tau ^{5}+1365 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{20}+\left (125 \tau ^{5}+455 \,{\mathrm e}^{\frac {15 c_2}{2}}\right ) \textit {\_Z}^{15}+105 \,{\mathrm e}^{\frac {15 c_2}{2}} \textit {\_Z}^{10}+15 \,{\mathrm e}^{\frac {15 c_2}{2}} \textit {\_Z}^{5}+{\mathrm e}^{\frac {15 c_2}{2}}\right )}^{5}+1\right )}^{2}\right )}^{{3}/{2}}}{\tau }d \tau +x +c_6 \right )
\]
was found not to satisfy the ode or the IC. Hence it is removed.
Summary of solutions found
\begin{align*}
y &= 0 \\
y &= c_3 \\
y &= {\mathrm e}^{-x -c_5} \\
\end{align*}
Maple step by step solution
Maple trace
`Methods for second order ODEs:
*** Sublevel 2 ***
Methods for second order ODEs:
Successful isolation of d^2y/dx^2: 3 solutions were found. Trying to solve each resulting ODE.
*** Sublevel 3 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
Try integration with the canonical coordinates of the symmetry [0, y]
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -_b(_a)^2+(-_b(_a))^(1/3), _b(_a), explicit, HINT = [[1, 0]]` ***
symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[1, 0]
Maple dsolve solution
Solving time : 0.184
(sec)
Leaf size : 126
dsolve(y(x)*diff(diff(y(x),x),x)^3+diff(y(x),x)*y(x)^3 = 0,y(x),singsol=all)
\begin{align*}
y &= 0 \\
y &= c_{1} \\
y &= {\mathrm e}^{\int \operatorname {RootOf}\left (x -\int _{}^{\textit {\_Z}}-\frac {1}{\textit {\_f}^{2}-\left (-\textit {\_f} \right )^{{1}/{3}}}d \textit {\_f} +c_{1} \right )d x +c_{2}} \\
y &= {\mathrm e}^{\int \operatorname {RootOf}\left (x +2 \left (\int _{}^{\textit {\_Z}}\frac {1}{i \left (-\textit {\_f} \right )^{{1}/{3}} \sqrt {3}+2 \textit {\_f}^{2}+\left (-\textit {\_f} \right )^{{1}/{3}}}d \textit {\_f} \right )+c_{1} \right )d x +c_{2}} \\
y &= {\mathrm e}^{\int \operatorname {RootOf}\left (x -2 \left (\int _{}^{\textit {\_Z}}\frac {1}{i \left (-\textit {\_f} \right )^{{1}/{3}} \sqrt {3}-2 \textit {\_f}^{2}-\left (-\textit {\_f} \right )^{{1}/{3}}}d \textit {\_f} \right )+c_{1} \right )d x +c_{2}} \\
\end{align*}
Mathematica DSolve solution
Solving time : 2.742
(sec)
Leaf size : 800
DSolve[{y[x]*D[y[x],{x,2}]^3+y[x]^3*D[y[x],x]==0,{}},y[x],x,IncludeSingularSolutions->True]
\begin{align*}
y(x)\to 0 \\
y(x)\to \text {InverseFunction}\left [\frac {\text {$\#$1} \left (1-\frac {3 \text {$\#$1}^{5/3}}{5 c_1}\right ){}^{3/5} \operatorname {Hypergeometric2F1}\left (\frac {3}{5},\frac {3}{5},\frac {8}{5},\frac {3 \text {$\#$1}^{5/3}}{5 c_1}\right )}{\left (-\text {$\#$1}^{5/3}+\frac {5 c_1}{3}\right ){}^{3/5}}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [\frac {\text {$\#$1} \left (1+\frac {3 \sqrt [3]{-1} \text {$\#$1}^{5/3}}{5 c_1}\right ){}^{3/5} \operatorname {Hypergeometric2F1}\left (\frac {3}{5},\frac {3}{5},\frac {8}{5},-\frac {3 \sqrt [3]{-1} \text {$\#$1}^{5/3}}{5 c_1}\right )}{\left (\sqrt [3]{-1} \text {$\#$1}^{5/3}+\frac {5 c_1}{3}\right ){}^{3/5}}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [\frac {\text {$\#$1} \left (1-\frac {3 (-1)^{2/3} \text {$\#$1}^{5/3}}{5 c_1}\right ){}^{3/5} \operatorname {Hypergeometric2F1}\left (\frac {3}{5},\frac {3}{5},\frac {8}{5},\frac {3 (-1)^{2/3} \text {$\#$1}^{5/3}}{5 c_1}\right )}{\left (-(-1)^{2/3} \text {$\#$1}^{5/3}+\frac {5 c_1}{3}\right ){}^{3/5}}\&\right ][x+c_2] \\
y(x)\to 0 \\
y(x)\to \text {InverseFunction}\left [\frac {\text {$\#$1} \left (1-\frac {3 \text {$\#$1}^{5/3}}{5 (-c_1)}\right ){}^{3/5} \operatorname {Hypergeometric2F1}\left (\frac {3}{5},\frac {3}{5},\frac {8}{5},\frac {3 \text {$\#$1}^{5/3}}{5 (-c_1)}\right )}{\left (-\text {$\#$1}^{5/3}+\frac {5 (-c_1)}{3}\right ){}^{3/5}}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [\frac {\text {$\#$1} \left (1+\frac {3 \sqrt [3]{-1} \text {$\#$1}^{5/3}}{5 (-c_1)}\right ){}^{3/5} \operatorname {Hypergeometric2F1}\left (\frac {3}{5},\frac {3}{5},\frac {8}{5},-\frac {3 \sqrt [3]{-1} \text {$\#$1}^{5/3}}{5 (-c_1)}\right )}{\left (\sqrt [3]{-1} \text {$\#$1}^{5/3}+\frac {5}{3} (-1) c_1\right ){}^{3/5}}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [\frac {\text {$\#$1} \left (1-\frac {3 (-1)^{2/3} \text {$\#$1}^{5/3}}{5 (-c_1)}\right ){}^{3/5} \operatorname {Hypergeometric2F1}\left (\frac {3}{5},\frac {3}{5},\frac {8}{5},\frac {3 (-1)^{2/3} \text {$\#$1}^{5/3}}{5 (-c_1)}\right )}{\left (-(-1)^{2/3} \text {$\#$1}^{5/3}+\frac {5 (-c_1)}{3}\right ){}^{3/5}}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [\frac {\text {$\#$1} \left (1-\frac {3 \text {$\#$1}^{5/3}}{5 c_1}\right ){}^{3/5} \operatorname {Hypergeometric2F1}\left (\frac {3}{5},\frac {3}{5},\frac {8}{5},\frac {3 \text {$\#$1}^{5/3}}{5 c_1}\right )}{\left (-\text {$\#$1}^{5/3}+\frac {5 c_1}{3}\right ){}^{3/5}}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [\frac {\text {$\#$1} \left (1+\frac {3 \sqrt [3]{-1} \text {$\#$1}^{5/3}}{5 c_1}\right ){}^{3/5} \operatorname {Hypergeometric2F1}\left (\frac {3}{5},\frac {3}{5},\frac {8}{5},-\frac {3 \sqrt [3]{-1} \text {$\#$1}^{5/3}}{5 c_1}\right )}{\left (\sqrt [3]{-1} \text {$\#$1}^{5/3}+\frac {5 c_1}{3}\right ){}^{3/5}}\&\right ][x+c_2] \\
y(x)\to \text {InverseFunction}\left [\frac {\text {$\#$1} \left (1-\frac {3 (-1)^{2/3} \text {$\#$1}^{5/3}}{5 c_1}\right ){}^{3/5} \operatorname {Hypergeometric2F1}\left (\frac {3}{5},\frac {3}{5},\frac {8}{5},\frac {3 (-1)^{2/3} \text {$\#$1}^{5/3}}{5 c_1}\right )}{\left (-(-1)^{2/3} \text {$\#$1}^{5/3}+\frac {5 c_1}{3}\right ){}^{3/5}}\&\right ][x+c_2] \\
\end{align*}