Chapter 1
Lookup tables for all problems in current book

1.1 Chapter 1. section 5. Problems at page 19
1.2 Chapter IV. Methods of solution: First order equations. section 24. Problems at page 62
1.3 Chapter IV. Methods of solution: First order equations. section 29. Problems at page 81
1.4 Chapter IV. Methods of solution: First order equations. section 31. Problems at page 85
1.5 Chapter IV. Methods of solution: First order equations. section 32. Problems at page 89
1.6 Chapter IV. Methods of solution: First order equations. section 33. Problems at page 91
1.7 Chapter V. Singular solutions. section 36. Problems at page 99
1.8 Chapter VII. Linear equations of order higher than the first. section 56. Problems at page 163
1.9 Chapter VII. Linear equations of order higher than the first. section 63. Problems at page 196

1.1 Chapter 1. section 5. Problems at page 19

Table 1.1: Lookup table

ID

problem

ODE

18531

2

\(x^{2} y^{\prime \prime }-\frac {x^{2} {y^{\prime }}^{2}}{2 y}+4 x y^{\prime }+4 y = 0\)

18532

3

\(y^{\prime }+c y = a\)

18533

4

\(y^{\prime \prime }+\frac {y^{\prime }}{x}+k^{2} y = 0\)

18534

5

\(\cos \left (x \right ) y^{\prime }+\sin \left (x \right ) y^{\prime \prime }+n y \sin \left (x \right ) = 0\)

18535

6

\(y^{\prime } = \frac {\sqrt {1-y^{2}}\, \arcsin \left (y\right )}{x}\)

18536

16 (a)

\(v^{\prime \prime } = \left (\frac {1}{v}+{v^{\prime }}^{4}\right )^{{1}/{3}}\)

18537

16 (b)

\(v^{\prime }+u^{2} v = \sin \left (u \right )\)

18538

17 (a)

\(\sqrt {y^{\prime }+y} = \left (y^{\prime \prime }+2 x \right )^{{1}/{4}}\)

18539

18

\(v^{\prime }+\frac {2 v}{u} = 3\)

1.2 Chapter IV. Methods of solution: First order equations. section 24. Problems at page 62

Table 1.3: Lookup table

ID

problem

ODE

18540

4 (a)

\(\sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime } = 0\)

18541

4 (b)

\(y^{\prime }+\sqrt {\frac {1-y^{2}}{-x^{2}+1}} = 0\)

18542

4 (c)

\(y-x y^{\prime } = b \left (1+x^{2} y^{\prime }\right )\)

18543

5

\(x^{\prime } = k \left (A -n x\right ) \left (M -m x\right )\)

18544

6

\(y^{\prime } = 1+\frac {1}{x}-\frac {1}{y^{2}+2}-\frac {1}{x \left (y^{2}+2\right )}\)

1.3 Chapter IV. Methods of solution: First order equations. section 29. Problems at page 81

Table 1.5: Lookup table

ID

problem

ODE

18545

1

\(y^{2} = x \left (y-x \right ) y^{\prime }\)

18546

2

\(2 x^{2} y+y^{3}-x^{3} y^{\prime } = 0\)

18547

3

\(2 a x +b y+\left (2 c y+b x +e \right ) y^{\prime } = g\)

18548

4

\(\sec \left (x \right )^{2} \tan \left (y\right ) y^{\prime }+\sec \left (y\right )^{2} \tan \left (x \right ) = 0\)

18549

5

\(x +y^{\prime } y = m y\)

18550

6

\(\frac {2 x}{y^{3}}+\left (\frac {1}{y^{2}}-\frac {3 x^{2}}{y^{4}}\right ) y^{\prime } = 0\)

18551

8

\(\left (T+\frac {1}{\sqrt {t^{2}-T^{2}}}\right ) T^{\prime } = \frac {T}{t \sqrt {t^{2}-T^{2}}}-t\)

1.4 Chapter IV. Methods of solution: First order equations. section 31. Problems at page 85

Table 1.7: Lookup table

ID

problem

ODE

18552

1

\(y^{\prime }+x y = x\)

18553

2

\(y^{\prime }+\frac {y}{x} = \sin \left (x \right )\)

18554

3

\(y^{\prime }+\frac {y}{x} = \frac {\sin \left (x \right )}{y^{3}}\)

18555

4

\(p^{\prime } = \frac {p+a \,t^{3}-2 p t^{2}}{t \left (-t^{2}+1\right )}\)

18556

5

\(\left (T \ln \left (t \right )-1\right ) T = t T^{\prime }\)

18557

6

\(y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2}\)

18558

7

\(y-\cos \left (x \right ) y^{\prime } = y^{2} \cos \left (x \right ) \left (-\sin \left (x \right )+1\right )\)

1.5 Chapter IV. Methods of solution: First order equations. section 32. Problems at page 89

Table 1.9: Lookup table

ID

problem

ODE

18559

2

\(x {y^{\prime }}^{2}-y+2 y^{\prime } = 0\)

18560

3

\(2 {y^{\prime }}^{3}+{y^{\prime }}^{2}-y = 0\)

18561

4

\(y^{\prime } = {\mathrm e}^{z -y^{\prime }}\)

18562

5

\(\sqrt {t^{2}+T} = T^{\prime }\)

18563

7

\(\left (x^{2}-1\right ) {y^{\prime }}^{2} = 1\)

18564

8

\(y^{\prime } = \left (x +y\right )^{2}\)

1.6 Chapter IV. Methods of solution: First order equations. section 33. Problems at page 91

Table 1.11: Lookup table

ID

problem

ODE

18565

1

\(\theta ^{\prime \prime } = -p^{2} \theta \)

18566

2 (eq 39)

\(\sec \left (\theta \right )^{2} = \frac {m s^{\prime }}{k}\)

18567

3 (eq 41)

\(y^{\prime \prime } = \frac {m \sqrt {{y^{\prime }}^{2}+1}}{k}\)

18568

4 (eq 50)

\(\phi ^{\prime \prime } = \frac {4 \pi n c}{\sqrt {v_{0}^{2}+\frac {2 e \left (\phi -V_{0} \right )}{m}}}\)

18569

8 (eq 68)

\(y^{\prime } = x \left (a y^{2}+b \right )\)

18570

8 (eq 69)

\(n^{\prime } = \left (n^{2}+1\right ) x\)

18571

9 (a)

\(v^{\prime }+\frac {2 v}{u} = 3 v\)

18572

9 (b)

\(\sqrt {-u^{2}+1}\, v^{\prime } = 2 u \sqrt {1-v^{2}}\)

18573

9 (c)

\(\sqrt {1+v^{\prime }} = \frac {{\mathrm e}^{u}}{2}\)

18574

9 (d)

\(\frac {y^{\prime }}{x} = y \sin \left (x^{2}-1\right )-\frac {2 y}{\sqrt {x}}\)

18575

9 (e)

\(y^{\prime } = 1+\frac {2 y}{x -y}\)

18576

10 (a)

\(v^{\prime }+2 v u = 2 u\)

18577

10 (b)

\(1+v^{2}+\left (u^{2}+1\right ) v v^{\prime } = 0\)

18578

10 (c)

\(u \ln \left (u \right ) v^{\prime }+\sin \left (v\right )^{2} = 1\)

1.7 Chapter V. Singular solutions. section 36. Problems at page 99

Table 1.13: Lookup table

ID

problem

ODE

18579

1 (eq 98)

\(4 y {y^{\prime }}^{3}-2 x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }+x^{3} = 16 y^{2}\)

1.8 Chapter VII. Linear equations of order higher than the first. section 56. Problems at page 163

Table 1.15: Lookup table

ID

problem

ODE

18580

1 (eq 100)

\(\theta ^{\prime \prime }-p^{2} \theta = 0\)

18581

2

\(y^{\prime \prime }+y = 0\)

18582

3

\(y^{\prime \prime }+12 y = 7 y^{\prime }\)

18583

4

\(r^{\prime \prime }-a^{2} r = 0\)

18584

5

\(y^{\prime \prime \prime \prime }-a^{4} y = 0\)

18585

6

\(v^{\prime \prime }-6 v^{\prime }+13 v = {\mathrm e}^{-2 u}\)

18586

7

\(y^{\prime \prime }+4 y^{\prime }-y = \sin \left (t \right )\)

18587

8

\(y^{\prime \prime }+3 y = \sin \left (x \right )+\frac {\sin \left (3 x \right )}{3}\)

18588

10

\(5 x^{\prime }+x = \sin \left (3 t \right )\)

18589

11

\(x^{\prime \prime \prime \prime }-6 x^{\prime \prime \prime }+11 x^{\prime \prime }-6 x^{\prime } = {\mathrm e}^{-3 t}\)

18590

14

\(x^{4} y^{\prime \prime \prime \prime }+x^{3} y^{\prime \prime \prime }-20 x^{2} y^{\prime \prime }+20 x y^{\prime } = 17 x^{6}\)

18591

15

\(t^{4} x^{\prime \prime \prime \prime }-2 t^{3} x^{\prime \prime \prime }-20 t^{2} x^{\prime \prime }+12 x^{\prime } t +16 x = \cos \left (3 \ln \left (t \right )\right )\)

1.9 Chapter VII. Linear equations of order higher than the first. section 63. Problems at page 196

Table 1.17: Lookup table

ID

problem

ODE

18592

1

\(y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0\)

18593

2

\(y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = {\mathrm e}^{2 x}\)

18594

3

\(y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \cos \left (x \right )\)

18595

8

\(x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{x}\)