1.470 problem 485
Internal
problem
ID
[8608]
Book
:
Collection
of
Kovacic
problems
Section
:
section
1
Problem
number
:
485
Date
solved
:
Monday, October 21, 2024 at 05:10:22 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Solve
\begin{align*} x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+2 x \left (x^{2}+5\right ) y^{\prime }+2 \left (-x^{2}+3\right ) y&=0 \end{align*}
1.470.1 Solved as second order ode using Kovacic algorithm
Time used: 0.488 (sec)
Writing the ode as
\begin{align*} \left (x^{4}+2 x^{2}\right ) y^{\prime \prime }+\left (2 x^{3}+10 x \right ) y^{\prime }+\left (-2 x^{2}+6\right ) y &= 0 \tag {1} \\ A y^{\prime \prime } + B y^{\prime } + C y &= 0 \tag {2} \end{align*}
Comparing (1) and (2) shows that
\begin{align*} A &= x^{4}+2 x^{2} \\ B &= 2 x^{3}+10 x\tag {3} \\ C &= -2 x^{2}+6 \end{align*}
Applying the Liouville transformation on the dependent variable gives
\begin{align*} z(x) &= y e^{\int \frac {B}{2 A} \,dx} \end{align*}
Then (2) becomes
\begin{align*} z''(x) = r z(x)\tag {4} \end{align*}
Where \(r\) is given by
\begin{align*} r &= \frac {s}{t}\tag {5} \\ &= \frac {2 A B' - 2 B A' + B^2 - 4 A C}{4 A^2} \end{align*}
Substituting the values of \(A,B,C\) from (3) in the above and simplifying gives
\begin{align*} r &= \frac {2 x^{4}-5 x^{2}+3}{\left (x^{3}+2 x \right )^{2}}\tag {6} \end{align*}
Comparing the above to (5) shows that
\begin{align*} s &= 2 x^{4}-5 x^{2}+3\\ t &= \left (x^{3}+2 x \right )^{2} \end{align*}
Therefore eq. (4) becomes
\begin{align*} z''(x) &= \left ( \frac {2 x^{4}-5 x^{2}+3}{\left (x^{3}+2 x \right )^{2}}\right ) z(x)\tag {7} \end{align*}
Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\begin{align*} y &= z \left (x \right ) e^{-\int \frac {B}{2 A} \,dx} \end{align*}
The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3
cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty \). The following table
summarizes these cases.
| | |
Case |
Allowed pole order for \(r\) |
Allowed value for \(\mathcal {O}(\infty )\) |
| | |
1 |
\(\left \{ 0,1,2,4,6,8,\cdots \right \} \) |
\(\left \{ \cdots ,-6,-4,-2,0,2,3,4,5,6,\cdots \right \} \) |
| | |
2
|
Need to have at least one pole
that is either order \(2\) or odd order
greater than \(2\). Any other pole order
is allowed as long as the above
condition is satisfied. Hence the
following set of pole orders are all
allowed. \(\{1,2\}\),\(\{1,3\}\),\(\{2\}\),\(\{3\}\),\(\{3,4\}\),\(\{1,2,5\}\). |
no condition |
| | |
3 |
\(\left \{ 1,2\right \} \) |
\(\left \{ 2,3,4,5,6,7,\cdots \right \} \) |
| | |
Table 470: Necessary conditions for each Kovacic case
The order of \(r\) at \(\infty \) is the degree of \(t\) minus the degree of \(s\). Therefore
\begin{align*} O\left (\infty \right ) &= \text {deg}(t) - \text {deg}(s) \\ &= 6 - 4 \\ &= 2 \end{align*}
The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=\left (x^{3}+2 x \right )^{2}\).
There is a pole at \(x=0\) of order \(2\). There is a pole at \(x=i \sqrt {2}\) of order \(2\). There is a pole at \(x=-i \sqrt {2}\) of
order \(2\). Since there is no odd order pole larger than \(2\) and the order at \(\infty \) is \(2\) then
the necessary conditions for case one are met. Since there is a pole of order \(2\) then
necessary conditions for case two are met. Since pole order is not larger than \(2\) and
the order at \(\infty \) is \(2\) then the necessary conditions for case three are met. Therefore
\begin{align*} L &= [1, 2, 4, 6, 12] \end{align*}
Attempting to find a solution using case \(n=1\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r = \frac {21}{16 \left (x -i \sqrt {2}\right )^{2}}+\frac {21}{16 \left (x +i \sqrt {2}\right )^{2}}+\frac {11 i \sqrt {2}}{32 \left (x -i \sqrt {2}\right )}-\frac {11 i \sqrt {2}}{32 \left (x +i \sqrt {2}\right )}+\frac {3}{4 x^{2}}
\]
For the pole at \(x=0\) let \(b\)
be the coefficient of \(\frac {1}{ x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b={\frac {3}{4}}\). Hence
\begin{alignat*}{2} [\sqrt r]_c &= 0 \\ \alpha _c^{+} &= \frac {1}{2} + \sqrt {1+4 b} &&= {\frac {3}{2}}\\ \alpha _c^{-} &= \frac {1}{2} - \sqrt {1+4 b} &&= -{\frac {1}{2}} \end{alignat*}
For the pole at \(x=i \sqrt {2}\) let \(b\) be the coefficient of \(\frac {1}{ \left (x -i \sqrt {2}\right )^{2}}\) in the partial fractions decomposition of \(r\) given
above. Therefore \(b={\frac {21}{16}}\). Hence
\begin{alignat*}{2} [\sqrt r]_c &= 0 \\ \alpha _c^{+} &= \frac {1}{2} + \sqrt {1+4 b} &&= {\frac {7}{4}}\\ \alpha _c^{-} &= \frac {1}{2} - \sqrt {1+4 b} &&= -{\frac {3}{4}} \end{alignat*}
For the pole at \(x=-i \sqrt {2}\) let \(b\) be the coefficient of \(\frac {1}{ \left (x +i \sqrt {2}\right )^{2}}\) in the partial fractions decomposition of \(r\) given
above. Therefore \(b={\frac {21}{16}}\). Hence
\begin{alignat*}{2} [\sqrt r]_c &= 0 \\ \alpha _c^{+} &= \frac {1}{2} + \sqrt {1+4 b} &&= {\frac {7}{4}}\\ \alpha _c^{-} &= \frac {1}{2} - \sqrt {1+4 b} &&= -{\frac {3}{4}} \end{alignat*}
Since the order of \(r\) at \(\infty \) is 2 then \([\sqrt r]_\infty =0\). Let \(b\) be the coefficient of \(\frac {1}{x^{2}}\) in the Laurent series expansion of \(r\)
at \(\infty \). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\)
from
\begin{alignat*}{2} r &= \frac {s}{t} &&= \frac {2 x^{4}-5 x^{2}+3}{\left (x^{3}+2 x \right )^{2}} \end{alignat*}
Since the \(\text {gcd}(s,t)=1\). This gives \(b=2\). Hence
\begin{alignat*}{2} [\sqrt r]_\infty &= 0 \\ \alpha _{\infty }^{+} &= \frac {1}{2} + \sqrt {1+4 b} &&= 2\\ \alpha _{\infty }^{-} &= \frac {1}{2} - \sqrt {1+4 b} &&= -1 \end{alignat*}
The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty \) where \(r\)
is
\[ r=\frac {2 x^{4}-5 x^{2}+3}{\left (x^{3}+2 x \right )^{2}} \]
| | | | |
pole \(c\) location |
pole order |
\([\sqrt r]_c\) |
\(\alpha _c^{+}\) |
\(\alpha _c^{-}\) |
| | | | |
\(0\) | \(2\) | \(0\) | \(\frac {3}{2}\) | \(-{\frac {1}{2}}\) |
| | | | |
\(i \sqrt {2}\) | \(2\) | \(0\) | \(\frac {7}{4}\) | \(-{\frac {3}{4}}\) |
| | | | |
\(-i \sqrt {2}\) | \(2\) | \(0\) | \(\frac {7}{4}\) | \(-{\frac {3}{4}}\) |
| | | | |
| | | |
Order of \(r\) at \(\infty \) |
\([\sqrt r]_\infty \) |
\(\alpha _\infty ^{+}\) |
\(\alpha _\infty ^{-}\) |
| | | |
\(2\) |
\(0\) | \(2\) | \(-1\) |
| | | |
Now that the all \([\sqrt r]_c\) and its associated \(\alpha _c^{\pm }\) have been determined for all the poles in the set \(\Gamma \) and \([\sqrt r]_\infty \)
and its associated \(\alpha _\infty ^{\pm }\) have also been found, the next step is to determine possible non negative
integer \(d\) from these using
\begin{align*} d &= \alpha _\infty ^{s(\infty )} - \sum _{c \in \Gamma } \alpha _c^{s(c)} \end{align*}
Where \(s(c)\) is either \(+\) or \(-\) and \(s(\infty )\) is the sign of \(\alpha _\infty ^{\pm }\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup {\infty }}\) until
such \(d\) is found to work in finding candidate \(\omega \). Trying \(\alpha _\infty ^{+} = 2\) then
\begin{align*} d &= \alpha _\infty ^{+} - \left ( \alpha _{c_1}^{+}+\alpha _{c_2}^{-}+\alpha _{c_3}^{-} \right ) \\ &= 2 - \left ( 0 \right ) \\ &= 2 \end{align*}
Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega \) using
\begin{align*} \omega &= \sum _{c \in \Gamma } \left ( s(c) [\sqrt r]_c + \frac {\alpha _c^{s(c)}}{x-c} \right ) + s(\infty ) [\sqrt r]_\infty \end{align*}
Substituting the above values in the above results in
\begin{align*} \omega &= \left ( (+) [\sqrt r]_{c_1} + \frac { \alpha _{c_1}^{+} }{x- c_1}\right )+\left ( (-)[\sqrt r]_{c_2} + \frac { \alpha _{c_2}^{-} }{x- c_2}\right )+\left ( (-)[\sqrt r]_{c_3} + \frac { \alpha _{c_3}^{-} }{x- c_3}\right ) + (+) [\sqrt r]_\infty \\ &= \frac {3}{2 x}-\frac {3}{4 \left (x -i \sqrt {2}\right )}-\frac {3}{4 \left (x +i \sqrt {2}\right )} + \left ( 0 \right ) \\ &= \frac {3}{2 x}-\frac {3}{4 \left (x -i \sqrt {2}\right )}-\frac {3}{4 \left (x +i \sqrt {2}\right )}\\ &= \frac {3}{x^{3}+2 x} \end{align*}
Now that \(\omega \) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree
\(d=2\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\begin{align*} p'' + 2 \omega p' + \left ( \omega ' +\omega ^2 -r\right ) p = 0 \tag {1A} \end{align*}
Let
\begin{align*} p(x) &= x^{2}+a_{1} x +a_{0}\tag {2A} \end{align*}
Substituting the above in eq. (1A) gives
\begin{align*} \left (2\right ) + 2 \left (\frac {3}{2 x}-\frac {3}{4 \left (x -i \sqrt {2}\right )}-\frac {3}{4 \left (x +i \sqrt {2}\right )}\right ) \left (2 x +a_{1}\right ) + \left ( \left (-\frac {3}{2 x^{2}}+\frac {3}{4 \left (x -i \sqrt {2}\right )^{2}}+\frac {3}{4 \left (x +i \sqrt {2}\right )^{2}}\right ) + \left (\frac {3}{2 x}-\frac {3}{4 \left (x -i \sqrt {2}\right )}-\frac {3}{4 \left (x +i \sqrt {2}\right )}\right )^2 - \left (\frac {2 x^{4}-5 x^{2}+3}{\left (x^{3}+2 x \right )^{2}}\right ) \right ) &= 0\\ \frac {2 \left (x^{2}+2\right ) \left (x^{2} a_{1}+\left (a_{0}-8\right ) x -3 a_{1}\right )}{x \left (x +i \sqrt {2}\right )^{2} \left (\sqrt {2}+i x \right )^{2}} = 0 \end{align*}
Solving for the coefficients \(a_i\) in the above using method of undetermined coefficients gives
\[ \{a_{0} = 8, a_{1} = 0\} \]
Substituting these coefficients in \(p(x)\) in eq. (2A) results in
\begin{align*} p(x) &= x^{2}+8 \end{align*}
Therefore the first solution to the ode \(z'' = r z\) is
\begin{align*} z_1(x) &= p e^{ \int \omega \,dx}\\ & = \left (x^{2}+8\right ) {\mathrm e}^{\int \left (\frac {3}{2 x}-\frac {3}{4 \left (x -i \sqrt {2}\right )}-\frac {3}{4 \left (x +i \sqrt {2}\right )}\right )d x}\\ & = \left (x^{2}+8\right ) {\mathrm e}^{\frac {3 \ln \left (x \right )}{2}-\frac {3 \ln \left (x^{2}+2\right )}{4}}\\ & = \frac {\left (x^{2}+8\right ) x^{{3}/{2}}}{\left (x^{2}+2\right )^{{3}/{4}}} \end{align*}
The first solution to the original ode in \(y\) is found from
\begin{align*}
y_1 &= z_1 e^{ \int -\frac {1}{2} \frac {B}{A} \,dx} \\
&= z_1 e^{ -\int \frac {1}{2} \frac {2 x^{3}+10 x}{x^{4}+2 x^{2}} \,dx} \\
&= z_1 e^{-\frac {5 \ln \left (x \right )}{2}+\frac {3 \ln \left (x^{2}+2\right )}{4}} \\
&= z_1 \left (\frac {\left (x^{2}+2\right )^{{3}/{4}}}{x^{{5}/{2}}}\right ) \\
\end{align*}
Which simplifies to
\[
y_1 = \frac {x^{2}+8}{x}
\]
The second
solution \(y_2\) to the original ode is found using reduction of order
\[ y_2 = y_1 \int \frac { e^{\int -\frac {B}{A} \,dx}}{y_1^2} \,dx \]
Substituting gives
\begin{align*}
y_2 &= y_1 \int \frac { e^{\int -\frac {2 x^{3}+10 x}{x^{4}+2 x^{2}} \,dx}}{\left (y_1\right )^2} \,dx \\
&= y_1 \int \frac { e^{-5 \ln \left (x \right )+\frac {3 \ln \left (x^{2}+2\right )}{2}}}{\left (y_1\right )^2} \,dx \\
&= y_1 \left (\frac {\left (x^{2}+2\right )^{{3}/{2}}}{384}+\frac {\sqrt {x^{2}+2}}{96}-\frac {\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {2}}{\sqrt {x^{2}+2}}\right )}{64}-\frac {\left (x^{2}+2\right )^{{5}/{2}}}{256 x^{2}}+\frac {3 \sqrt {x^{2}+2}}{64 \left (x^{2}+8\right )}+\frac {x^{2} \sqrt {x^{2}+2}}{768}\right ) \\
\end{align*}
Therefore
the solution is
\begin{align*}
y &= c_1 y_1 + c_2 y_2 \\
&= c_1 \left (\frac {x^{2}+8}{x}\right ) + c_2 \left (\frac {x^{2}+8}{x}\left (\frac {\left (x^{2}+2\right )^{{3}/{2}}}{384}+\frac {\sqrt {x^{2}+2}}{96}-\frac {\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {2}}{\sqrt {x^{2}+2}}\right )}{64}-\frac {\left (x^{2}+2\right )^{{5}/{2}}}{256 x^{2}}+\frac {3 \sqrt {x^{2}+2}}{64 \left (x^{2}+8\right )}+\frac {x^{2} \sqrt {x^{2}+2}}{768}\right )\right ) \\
\end{align*}
Will add steps showing solving for IC soon.
1.470.2 Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x^{2} \left (x^{2}+2\right ) \left (\frac {d}{d x}y^{\prime }\right )+2 x \left (x^{2}+5\right ) y^{\prime }+2 \left (-x^{2}+3\right ) y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d}{d x}y^{\prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }=\frac {2 \left (x^{2}-3\right ) y}{x^{2} \left (x^{2}+2\right )}-\frac {2 \left (x^{2}+5\right ) y^{\prime }}{x \left (x^{2}+2\right )} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }+\frac {2 \left (x^{2}+5\right ) y^{\prime }}{x \left (x^{2}+2\right )}-\frac {2 \left (x^{2}-3\right ) y}{x^{2} \left (x^{2}+2\right )}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=\frac {2 \left (x^{2}+5\right )}{x \left (x^{2}+2\right )}, P_{3}\left (x \right )=-\frac {2 \left (x^{2}-3\right )}{x^{2} \left (x^{2}+2\right )}\right ] \\ {} & \circ & x \cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x \cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=5 \\ {} & \circ & x^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=3 \\ {} & \circ & x =0\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=0 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & x^{2} \left (x^{2}+2\right ) \left (\frac {d}{d x}y^{\prime }\right )+2 x \left (x^{2}+5\right ) y^{\prime }+\left (-2 x^{2}+6\right ) y=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..2 \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r +m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k -m \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =m}{\sum }}a_{k -m} x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y^{\prime }\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =1..3 \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) x^{k +r -1+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1-m \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =-1+m}{\sum }}a_{k +1-m} \left (k +1-m +r \right ) x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot \left (\frac {d}{d x}y^{\prime }\right )\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =2..4 \\ {} & {} & x^{m}\cdot \left (\frac {d}{d x}y^{\prime }\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) x^{k +r -2+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2-m \\ {} & {} & x^{m}\cdot \left (\frac {d}{d x}y^{\prime }\right )=\moverset {\infty }{\munderset {k =-2+m}{\sum }}a_{k +2-m} \left (k +2-m +r \right ) \left (k +1-m +r \right ) x^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & 2 a_{0} \left (3+r \right ) \left (1+r \right ) x^{r}+2 a_{1} \left (4+r \right ) \left (2+r \right ) x^{1+r}+\left (\moverset {\infty }{\munderset {k =2}{\sum }}\left (2 a_{k} \left (k +r +3\right ) \left (k +r +1\right )+a_{k -2} \left (k +r \right ) \left (k -3+r \right )\right ) x^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & 2 \left (3+r \right ) \left (1+r \right )=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r \in \left \{-3, -1\right \} \\ \bullet & {} & \textrm {Each term must be 0}\hspace {3pt} \\ {} & {} & 2 a_{1} \left (4+r \right ) \left (2+r \right )=0 \\ \bullet & {} & \textrm {Solve for the dependent coefficient(s)}\hspace {3pt} \\ {} & {} & a_{1}=0 \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & 2 a_{k} \left (k +r +3\right ) \left (k +r +1\right )+a_{k -2} \left (k +r \right ) \left (k -3+r \right )=0 \\ \bullet & {} & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2 \\ {} & {} & 2 a_{k +2} \left (k +5+r \right ) \left (k +r +3\right )+a_{k} \left (k +r +2\right ) \left (k +r -1\right )=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +2}=-\frac {a_{k} \left (k +r +2\right ) \left (k +r -1\right )}{2 \left (k +5+r \right ) \left (k +r +3\right )} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =-3\hspace {3pt}\textrm {; series terminates at}\hspace {3pt} k =4 \\ {} & {} & a_{k +2}=-\frac {a_{k} \left (k -1\right ) \left (k -4\right )}{2 \left (k +2\right ) k} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =-3 \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k -3}, a_{k +2}=-\frac {a_{k} \left (k -1\right ) \left (k -4\right )}{2 \left (k +2\right ) k}, a_{1}=0\right ] \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =-1\hspace {3pt}\textrm {; series terminates at}\hspace {3pt} k =2 \\ {} & {} & a_{k +2}=-\frac {a_{k} \left (k +1\right ) \left (k -2\right )}{2 \left (k +4\right ) \left (k +2\right )} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =-1 \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k -1}, a_{k +2}=-\frac {a_{k} \left (k +1\right ) \left (k -2\right )}{2 \left (k +4\right ) \left (k +2\right )}, a_{1}=0\right ] \\ \bullet & {} & \textrm {Combine solutions and rename parameters}\hspace {3pt} \\ {} & {} & \left [y=\left (\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k -3}\right )+\left (\moverset {\infty }{\munderset {k =0}{\sum }}b_{k} x^{k -1}\right ), a_{k +2}=-\frac {a_{k} \left (k -1\right ) \left (k -4\right )}{2 \left (k +2\right ) k}, a_{1}=0, b_{k +2}=-\frac {b_{k} \left (k +1\right ) \left (k -2\right )}{2 \left (k +4\right ) \left (k +2\right )}, b_{1}=0\right ] \end {array} \]
1.470.3 Maple trace
Methods for second order ODEs:
1.470.4 Maple dsolve solution
Solving time : 0.006
(sec)
Leaf size : 53
dsolve(x^2*(x^2+2)*diff(diff(y(x),x),x)+2*x*(x^2+5)*diff(y(x),x)+2*(-x^2+3)*y(x) = 0,
y(x),singsol=all)
\[
y = \frac {-\sqrt {x^{2}+2}\, \left (x -2\right ) \left (x +2\right ) c_2 \sqrt {2}+x^{2} \left (x^{2}+8\right ) \left (\operatorname {arctanh}\left (\frac {\sqrt {2}}{\sqrt {x^{2}+2}}\right ) c_2 +c_1 \right )}{x^{3}}
\]
1.470.5 Mathematica DSolve solution
Solving time : 0.183
(sec)
Leaf size : 88
DSolve[{x^2*(2+x^2)*D[y[x],{x,2}]+2*x*(x^2+5)*D[y[x],x]+2*(3-x^2)*y[x]==0,{}},
y[x],x,IncludeSingularSolutions->True]
\[
y(x)\to \frac {-\sqrt {2} c_2 \left (x^2+8\right ) x^2 \text {arctanh}\left (\frac {\sqrt {x^2+2}}{\sqrt {2}}\right )+64 c_1 x^4+2 x^2 \left (c_2 \sqrt {x^2+2}+256 c_1\right )-8 c_2 \sqrt {x^2+2}}{64 x^3}
\]