Added Jan 19, 2020.
Problem Chapter 9.5.1.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x,y,z],x]+ a*D[w[x,y,z],y]+b*D[w[x,y,z],z]==c*Log[beta*x]^n*w[x,y,z]+ k*Log[lambda*x]^m; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Maple ✓
restart; local gamma; pde := diff(w(x,y,z),x)+a*diff(w(x,y,z),y)+ b*diff(w(x,y,z),z)=c*ln(beta*x)^n*w(x,y,z)+ k*ln(lambda*x)^m; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Jan 19, 2020.
Problem Chapter 9.5.1.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x,y,z],x]+ a*Log[beta*x]^n*D[w[x,y,z],y]+b*Log[lambda*x]^k*D[w[x,y,z],z]==c*w[x,y,z]+ s*Log[mu*x]^m; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Maple ✓
restart; local gamma; pde := diff(w(x,y,z),x)+a*ln(beta*x)^n*diff(w(x,y,z),y)+ b*ln(lambda*x)^k*diff(w(x,y,z),z)=c*w(x,y,z)+ s*ln(mu*x)^m; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Jan 19, 2020.
Problem Chapter 9.5.1.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x,y,z],x]+ b*Log[beta*x]^n*D[w[x,y,z],y]+c*Log[lambda*y]^k*D[w[x,y,z],z]==a*w[x,y,z]+ s*Log[mu*x]^m; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Maple ✓
restart; local gamma; pde := diff(w(x,y,z),x)+b*ln(beta*x)^n*diff(w(x,y,z),y)+ c*ln(lambda*y)^k*diff(w(x,y,z),z)=a*w(x,y,z)+ s*ln(mu*x)^m; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Jan 19, 2020.
Problem Chapter 9.5.1.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = a*Log[alpha*x]*D[w[x,y,z],x]+ b*Log[beta*y]*D[w[x,y,z],y]+c*Log[gamma*z]*D[w[x,y,z],z]==p*w[x,y,z]+ q*Log[lambda*x]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Failed
Maple ✓
restart; local gamma; pde := a*ln(alpha*x)*diff(w(x,y,z),x)+b*ln(beta*y)*diff(w(x,y,z),y)+ c*ln(gamma*z)*diff(w(x,y,z),z)=p*w(x,y,z)+ q*ln(lambda*x); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added Jan 19, 2020.
Problem Chapter 9.5.1.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = b1*Log[lambda1*x]^n1*D[w[x,y,z],x]+ b2*Log[lambda2*x]^n2*D[w[x,y,z],y]+b3*Log[lambda3*x]^n3*D[w[x,y,z],z]==a*w[x,y,z]+ c1*Log[beta1*x]^k1+ c2*Log[beta2*x]^k2+ c3*Log[beta3*x]^k3; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Maple ✓
restart; local gamma; pde := b__1*ln(lambda__1*x)^(n__1)*diff(w(x,y,z),x)+b__2*ln(lambda__2*x)^(n__2)*diff(w(x,y,z),y)+ b__3*ln(lambda__3*x)^(n__3)*diff(w(x,y,z),z)=a*w(x,y,z)+ c__1*ln(beta__1*x)^(k__1)+ c__2*ln(beta__2*x)^(k__2)+ c__3*ln(beta__3*x)^(k__3); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));