6.8.16 6.3
6.8.16.1 [1854] Problem 1
problem number 1854
Added Oct 18, 2019.
Problem Chapter 8.6.3.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ w_x + a w_y + b w_z = c \tan ^n(\beta x) w \]
Mathematica ✓
ClearAll["Global`*"];
pde = D[w[x, y,z], x] + a*D[w[x, y,z], y] + b*D[w[x,y,z],z]== c*Tan[beta*x]^n*w[x,y,z];
sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to \exp \left (\frac {c \tan ^{n+1}(\beta x) \operatorname {Hypergeometric2F1}\left (1,\frac {n+1}{2},\frac {n+3}{2},-\tan ^2(\beta x)\right )}{\beta n+\beta }\right ) c_1(y-a x,z-b x)\right \}\right \}\]
Maple ✓
restart;
local gamma;
pde := diff(w(x,y,z),x)+a*diff(w(x,y,z),y)+ b*diff(w(x,y,z),z)= c*tan(beta*x)^n*w(x,y,z);
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = f_{1} \left (-a x +y , -b x +z \right ) {\mathrm e}^{c \int \tan \left (\beta x \right )^{n}d x}\]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
6.8.16.2 [1855] Problem 2
problem number 1855
Added Oct 18, 2019.
Problem Chapter 8.6.3.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ a w_x + b w_y + c \tan (\beta z) w_z = \left ( k \tan (\lambda x)+s \tan (\gamma y) \right ) w \]
Mathematica ✓
ClearAll["Global`*"];
pde = a*D[w[x, y,z], x] + b*D[w[x, y,z], y] + c*Tan[beta*z]*D[w[x,y,z],z]== (k*Tan[lambda*x]+s*Tan[gamma*y])*w[x,y,z];
sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to \cos ^{-\frac {k}{a \lambda }}(\lambda x) \cos ^{-\frac {s}{b \gamma }}(\gamma y) c_1\left (y-\frac {b x}{a},\frac {\log (\sin (\beta z))}{\beta }-\frac {c x}{a}\right )\right \}\right \}\]
Maple ✓
restart;
local gamma;
pde := a*diff(w(x,y,z),x)+b*diff(w(x,y,z),y)+ c*tan(beta*z)*diff(w(x,y,z),z)= (k*tan(lambda*x)+s*tan(gamma*y))*w(x,y,z);
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = f_{1} \left (\frac {a y -b x}{a}, \frac {-x c \beta +\ln \left (\operatorname {csgn}\left (\sec \left (\beta z \right )\right ) \sin \left (\beta z \right )\right ) a}{c \beta }\right ) \left (\sec \left (\lambda x \right )^{2}\right )^{\frac {k}{2 a \lambda }} \left (\sec \left (\gamma y \right )^{2}\right )^{\frac {s}{2 \gamma b}}\]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
6.8.16.3 [1856] Problem 3
problem number 1856
Added Oct 18, 2019.
Problem Chapter 8.6.3.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ w_x + a \tan ^n(\beta x) w_y + b \tan ^k(\lambda x) w_z = c \tan ^m(\gamma x) w \]
Mathematica ✓
ClearAll["Global`*"];
pde = D[w[x, y,z], x] + a*Tan[beta*x]^n*D[w[x, y,z], y] + b*Tan[lambda*x]^k*D[w[x,y,z],z]== c*Tan[gamma*x]^m*w[x,y,z];
sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to \exp \left (\frac {c \tan ^{m+1}(\gamma x) \operatorname {Hypergeometric2F1}\left (1,\frac {m+1}{2},\frac {m+3}{2},-\tan ^2(\gamma x)\right )}{\gamma m+\gamma }\right ) c_1\left (y-\frac {a \tan ^{n+1}(\beta x) \operatorname {Hypergeometric2F1}\left (1,\frac {n+1}{2},\frac {n+3}{2},-\tan ^2(\beta x)\right )}{\beta n+\beta },z-\frac {b \tan ^{k+1}(\lambda x) \operatorname {Hypergeometric2F1}\left (1,\frac {k+1}{2},\frac {k+3}{2},-\tan ^2(\lambda x)\right )}{k \lambda +\lambda }\right )\right \}\right \}\]
Maple ✓
restart;
local gamma;
pde := diff(w(x,y,z),x)+a*tan(beta*x)^n*diff(w(x,y,z),y)+ b*tan(lambda*x)^k*diff(w(x,y,z),z)= c*tan(gamma*x)^m*w(x,y,z);
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = f_{1} \left (-a \int \tan \left (\beta x \right )^{n}d x +y , -b \int \tan \left (\lambda x \right )^{k}d x +z \right ) {\mathrm e}^{c \int \tan \left (\gamma x \right )^{m}d x}\]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
6.8.16.4 [1857] Problem 4
problem number 1857
Added Oct 18, 2019.
Problem Chapter 8.6.3.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ a w_x + b \tan (\beta y) w_y + c \tan (\lambda x) w_z = k \tan (\gamma z) w \]
Mathematica ✓
ClearAll["Global`*"];
pde = a*D[w[x, y,z], x] + b*Tan[beta*y]*D[w[x, y,z], y] + c*Tan[lambda*x]^m*D[w[x,y,z],z]== k*Tan[gamma*z]*w[x,y,z];
sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to c_1\left (\frac {\log (\sin (\beta y))}{\beta }-\frac {b x}{a},\frac {a \lambda m z+a \lambda z-c \tan ^{m+1}(\lambda x) \operatorname {Hypergeometric2F1}\left (1,\frac {m+1}{2},\frac {m+3}{2},-\tan ^2(\lambda x)\right )}{a \lambda m+a \lambda }\right ) \exp \left (\int _1^x\frac {k \tan \left (\frac {\gamma \left (-c \operatorname {Hypergeometric2F1}\left (1,\frac {m+1}{2},\frac {m+3}{2},-\tan ^2(\lambda x)\right ) \tan ^{m+1}(\lambda x)+c \operatorname {Hypergeometric2F1}\left (1,\frac {m+1}{2},\frac {m+3}{2},-\tan ^2(\lambda K[1])\right ) \tan ^{m+1}(\lambda K[1])+a \lambda (m+1) z\right )}{a \lambda (m+1)}\right )}{a}dK[1]\right )\right \}\right \}\]
Maple ✓
restart;
local gamma;
pde := a*diff(w(x,y,z),x)+b*tan(beta*y)*diff(w(x,y,z),y)+ c*tan(lambda*x)^m*diff(w(x,y,z),z)= k*tan(gamma*z)*w(x,y,z);
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = f_{1} \left (\frac {-x b \beta +\ln \left (\operatorname {csgn}\left (\sec \left (\beta y \right )\right ) \sin \left (\beta y \right )\right ) a}{b \beta }, -\frac {c \int \tan \left (\lambda x \right )^{m}d x}{a}+z \right ) {\mathrm e}^{\frac {k \int _{}^{x}\tan \left (\frac {\gamma \left (c \int \tan \left (\lambda \textit {\_b} \right )^{m}d \textit {\_b} -c \int \tan \left (\lambda x \right )^{m}d x +z a \right )}{a}\right )d \textit {\_b}}{a}}\]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
6.8.16.5 [1858] Problem 5
problem number 1858
Added Oct 18, 2019.
Problem Chapter 8.6.3.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ a_1 \tan ^{n_1}(\lambda _1 x) w_x + b_1 \tan ^{m_1}(\beta _1 y) w_y + c_1 \tan ^{k_1}(\gamma _1 z) w_z = \left ( a_2 \tan ^{n_2}(\lambda _2 x) + b_2 \tan ^{m_2}(\beta _2 y) + c_2 \tan ^{k_2}(\gamma _2 z) \right ) w \]
Mathematica ✗
ClearAll["Global`*"];
pde = a1*Tan[lambda1*z]^n1*D[w[x, y,z], x] + b1*Tan[beta1*y]^m1*D[w[x, y,z], y] + c1*Tan[gamma1*z]^k1*D[w[x,y,z],z]== (a2*Tan[lambda2*z]^n2 + b2*Tan[beta2*y]^m2 + c2*Tan[gamma2*z]^k2)*w[x,y,z];
sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Failed
Maple ✓
restart;
local gamma;
pde := a1*tan(lambda1*z)^n1*diff(w(x,y,z),x)+ b1*tan(beta1*y)^m1*diff(w(x,y,z),y)+ c1*tan(gamma1*z)^k1*diff(w(x,y,z),z)= (a2*tan(lambda2*z)^n2 + b2*tan(beta2*y)^m2 + c2*tan(gamma2*z)^k2)*w(x,y,z);
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = f_{1} \left (-\int \tan \left (\beta \operatorname {1} y \right )^{-\operatorname {m1}}d y +\frac {\operatorname {b1} \int \tan \left (\gamma \operatorname {1} z \right )^{-\operatorname {k1}}d z}{\operatorname {c1}}, -\frac {\operatorname {a1} \int _{}^{y}{\tan \left (\lambda \operatorname {1} \operatorname {RootOf}\left (\operatorname {b1} \int \tan \left (\gamma \operatorname {1} z \right )^{-\operatorname {k1}}d z +\int \tan \left (\beta \operatorname {1} \textit {\_f} \right )^{-\operatorname {m1}}d \textit {\_f} \operatorname {c1} -\operatorname {b1} \int _{}^{\textit {\_Z}}\tan \left (\gamma \operatorname {1} \textit {\_f} \right )^{-\operatorname {k1}}d \textit {\_f} -\int \tan \left (\beta \operatorname {1} y \right )^{-\operatorname {m1}}d y \operatorname {c1} \right )\right )}^{\operatorname {n1}} \tan \left (\beta \operatorname {1} \textit {\_f} \right )^{-\operatorname {m1}}d \textit {\_f}}{\operatorname {b1}}+x \right ) {\mathrm e}^{\frac {\int _{}^{y}\left (\operatorname {a2} {\tan \left (\lambda \operatorname {2} \operatorname {RootOf}\left (\operatorname {b1} \int \tan \left (\gamma \operatorname {1} z \right )^{-\operatorname {k1}}d z +\int \tan \left (\beta \operatorname {1} \textit {\_f} \right )^{-\operatorname {m1}}d \textit {\_f} \operatorname {c1} -\operatorname {b1} \int _{}^{\textit {\_Z}}\tan \left (\gamma \operatorname {1} \textit {\_f} \right )^{-\operatorname {k1}}d \textit {\_f} -\int \tan \left (\beta \operatorname {1} y \right )^{-\operatorname {m1}}d y \operatorname {c1} \right )\right )}^{\operatorname {n2}}+\operatorname {b2} \tan \left (\beta \operatorname {2} \textit {\_f} \right )^{\operatorname {m2}}+\operatorname {c2} {\tan \left (\gamma \operatorname {2} \operatorname {RootOf}\left (\operatorname {b1} \int \tan \left (\gamma \operatorname {1} z \right )^{-\operatorname {k1}}d z +\int \tan \left (\beta \operatorname {1} \textit {\_f} \right )^{-\operatorname {m1}}d \textit {\_f} \operatorname {c1} -\operatorname {b1} \int _{}^{\textit {\_Z}}\tan \left (\gamma \operatorname {1} \textit {\_f} \right )^{-\operatorname {k1}}d \textit {\_f} -\int \tan \left (\beta \operatorname {1} y \right )^{-\operatorname {m1}}d y \operatorname {c1} \right )\right )}^{\operatorname {k2}}\right ) \tan \left (\beta \operatorname {1} \textit {\_f} \right )^{-\operatorname {m1}}d \textit {\_f}}{\operatorname {b1}}}\]
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________