Added April 14, 2019.
Problem Chapter 6.2.2.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y,z], x] +(a1*x*y+b1*x^2+c1*x)*D[w[x, y,z], y] +(a2*x*y+b2*x^2+c2*x)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y,z),x)+(a1*x*y+b1*x^2+c1*x)*diff(w(x,y,z),y)+ (a2*x*y+b2*x^2+c2*x)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 14, 2019.
Problem Chapter 6.2.2.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y,z], x] +(a1*x*y+b1*x^2+c1*x)*D[w[x, y,z], y] +(a2*x*z+b2*x^2+c2*x)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y,z),x)+(a1*x*y+b1*x^2+c1*x)*diff(w(x,y,z),y)+ (a2*x*z+b2*x^2+c2*x)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 14, 2019.
Problem Chapter 6.2.2.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y,z], x] +(a1*x*y+b1*x^2+c1*x)*D[w[x, y,z], y] +(a2*y*z+b2*y^2+c2*y)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
$Aborted
Maple ✓
restart; pde := diff(w(x,y,z),x)+(a1*x*y+b1*x^2+c1*x)*diff(w(x,y,z),y)+ (a2*y*z+b2*y^2+c2*y)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 14, 2019.
Problem Chapter 6.2.2.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y,z], x] +(a1*x+b1*y^2)*D[w[x, y,z], y] +(a2*x*z+b2*z^2)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y,z),x)+(a1*x+b1*y^2)*diff(w(x,y,z),y)+ (a2*x*z+b2*z^2)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 14, 2019.
Problem Chapter 6.2.2.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y,z], x] +x*z*D[w[x, y,z], y] -x*y*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := a*diff(w(x,y,z),x)+x*z*diff(w(x,y,z),y)- x*y*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 14, 2019.
Problem Chapter 6.2.2.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = c*x*D[w[x, y,z], x] +c*y*D[w[x, y,z], y] +(a*x^2+b*y^2)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := c*x*diff(w(x,y,z),x)+c*y*diff(w(x,y,z),y)+(a*x^2+b*y^2)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 14, 2019.
Problem Chapter 6.2.2.7, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = c*z*D[w[x, y,z], x] -a*(2*a*x-b)*y*D[w[x, y,z], y] +a*(2*a*x-b)*z*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := c*z*diff(w(x,y,z),x)-a*(2*a*x-b)*diff(w(x,y,z),y)+a*(2*a*x-b)*z*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 14, 2019.
Problem Chapter 6.2.2.8, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = a*c*x^2*D[w[x, y,z], x] -a*c*x*y*D[w[x, y,z], y] -b^2*y^2*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := a*c*x^2*diff(w(x,y,z),x) -a*c*x*y*diff(w(x,y,z),y)-b^2*y^2*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 14, 2019.
Problem Chapter 6.2.2.9, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = a*x^2*D[w[x, y,z], x] +b*y^2*D[w[x, y,z], y] +c*z^2*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := a*x^2*diff(w(x,y,z),x) +b*y^2*diff(w(x,y,z),y)+c*z^2*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 14, 2019.
Problem Chapter 6.2.2.10, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = a*b*x^2*D[w[x, y,z], x] +c*z^2*D[w[x, y,z], y] +2*a*b*x*z*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := a*b*x^2*diff(w(x,y,z),x) +c*z^2*diff(w(x,y,z),y)+2*a*b*x*z*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 14, 2019.
Problem Chapter 6.2.2.11, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = b*c*x*y*D[w[x, y,z], x] +a^2*c*x^2*D[w[x, y,z], y] -b*y*(2*a*x+c*z)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := b*c*x*y*diff(w(x,y,z),x) +a^2*c*x^2*diff(w(x,y,z),y)-b*y*(2*a*x+c*z)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 14, 2019.
Problem Chapter 6.2.2.12, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = b*c*x*y*D[w[x, y,z], x] +c^2*y*z*D[w[x, y,z], y] +b^2*y^2*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := b*c*x*y*diff(w(x,y,z),x) +c^2*y*z*diff(w(x,y,z),y)+b^2*y^2*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 14, 2019.
Problem Chapter 6.2.2.13, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = x*y*D[w[x, y,z], x] +y*(y-a)*D[w[x, y,z], y] +z*(y-a)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := x*y*diff(w(x,y,z),x) +y*(y-a)*diff(w(x,y,z),y)+z*(y-a)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 14, 2019.
Problem Chapter 6.2.2.14, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = b*y^2*D[w[x, y,z], x] -a*x*y*D[w[x, y,z], y] +c*x*z*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := b*y^2*diff(w(x,y,z),x) -a*x*y*diff(w(x,y,z),y)+c*x*z*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 14, 2019.
Problem Chapter 6.2.2.15, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = c*x*z*D[w[x, y,z], x] +2*a*x*y*D[w[x, y,z], y] -(2*a*x+c*z)*z*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := c*x*z*diff(w(x,y,z),x) +2*a*x*y*diff(w(x,y,z),y)-(2*a*x+c*z)*z*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 14, 2019.
Problem Chapter 6.2.2.16, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = c*x*z*D[w[x, y,z], x] +c*y*z*D[w[x, y,z], y] +a*b*x*y*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := c*x*z*diff(w(x,y,z),x) +c*y*z*diff(w(x,y,z),y)+a*b*x*y*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 14, 2019.
Problem Chapter 6.2.2.17, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = c*x*z*D[w[x, y,z], x] -c*y*z*D[w[x, y,z], y] +(b*y^2-a*x)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := c*x*z*diff(w(x,y,z),x)-c*y*z*diff(w(x,y,z),y)+(b*y^2-a*x)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 14, 2019.
Problem Chapter 6.2.2.18, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = c*x*z*D[w[x, y,z], x] -c*y*z*D[w[x, y,z], y] +(a*x^2+b*y^2)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := c*x*z*diff(w(x,y,z),x)-c*y*z*diff(w(x,y,z),y)+(a*x^2+b*y^2)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 14, 2019.
Problem Chapter 6.2.2.19, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = x*z*D[w[x, y,z], x] +y*z*D[w[x, y,z], y] +(a*x^2+a*y^2+b*z^2)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := x*z*diff(w(x,y,z),x)+y*z*diff(w(x,y,z),y)+(a*x^2+a*y^2+b*z^2)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 14, 2019.
Problem Chapter 6.2.2.20, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = 2*c*x*z*D[w[x, y,z], x] +2*c*y*z*D[w[x, y,z], y] +(c*z^2-a*x^2-b*y^2)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := 2*c*x*z*diff(w(x,y,z),x)+2*c*y*z*diff(w(x,y,z),y)+(c*z^2-a*x^2-b*y^2)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 14, 2019.
Problem Chapter 6.2.2.21, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = b*c*y*z*D[w[x, y,z], x] +a*c*x*z*D[w[x, y,z], y] +a*b*x*y*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := b*c*y*z*diff(w(x,y,z),x)+a*c*x*z*diff(w(x,y,z),y)+a*b*x*y*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 14, 2019.
Problem Chapter 6.2.2.22, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = b*c*(x^2-a^2)*D[w[x, y,z], x] +c*(b*x*y+a*c*z)*D[w[x, y,z], y] +b*(c*x*z + a*b*y)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✗
restart; pde := b*c*(x^2-a^2)*diff(w(x,y,z),x)+c*(b*x*y+a*c*z)*diff(w(x,y,z),y)+b*(c*x*z + a*b*y)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 14, 2019.
Problem Chapter 6.2.2.23, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = b*x*(b*y+c)*D[w[x, y,z], x] + (b^2*y^2-a*c*x )*D[w[x, y,z], y] + b^2*y*z*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✓
restart; pde := b*x*(b*y+c)*diff(w(x,y,z),x)+(b^2*y^2-a*c*x )*diff(w(x,y,z),y)+b^2*y*z*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 14, 2019.
Problem Chapter 6.2.2.24, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = x*(b*y -c*z)*D[w[x, y,z], x] + y*(c*z-a*x)*D[w[x, y,z], y] + z*(a*x - b*y)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := x*(b*y -c*z)*diff(w(x,y,z),x)+ y*(c*z-a*x)*diff(w(x,y,z),y)+z*(a*x - b*y)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z),'build')),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 14, 2019.
Problem Chapter 6.2.2.25, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = a*(y+beta)*(z+gamma)*D[w[x, y,z], x] -b*(x+alpha)*(z+gamma)*D[w[x, y,z], y] - c*(x+alpha)*(y+beta)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := a*(y+beta)*(z+gamma)*diff(w(x,y,z),x)-b*(x+alpha)*(z+gamma)*diff(w(x,y,z),y)- c*(x+alpha)*(y+beta)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z),'build')),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 14, 2019.
Problem Chapter 6.2.2.26, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = b*c*(a*c*x*z + b^2*y^2)*D[w[x, y,z], x] +a*c*(b*c*y*z-2*a^2*x^2)*D[w[x, y,z], y] - a*b*(2*a*b*x*y+c^2*z^2)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✗
restart; pde := b*c*(a*c*x*z + b^2*y^2)*diff(w(x,y,z),x)+a*c*(b*c*y*z-2*a^2*x^2)*diff(w(x,y,z),y)- a*b*(2*a*b*x*y+c^2*z^2)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 14, 2019.
Problem Chapter 6.2.2.27, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✗
ClearAll["Global`*"]; pde = a*(y^2+z^2)*D[w[x, y,z], x] +x*(b*z-a*y)*D[w[x, y,z], y] -x*(b*y + a*z)*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✓
restart; pde := a*(y^2+z^2)*diff(w(x,y,z),x)+x*(b*z-a*y)*diff(w(x,y,z),y)-x*(b*y + a*z)*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z),'build')),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 14, 2019.
Problem Chapter 6.2.2.28, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Mathematica ✓
ClearAll["Global`*"]; pde = b*(b*y + c*z)^2*D[w[x, y,z], x] - a*x*(b*y + 2*c*z)*D[w[x, y,z], y] +a*b*x*z*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; pde := b*(b*y + c*z)^2*diff(w(x,y,z),x)- a*x*(b*y + 2*c*z)*diff(w(x,y,z),y)+a*b*x*z*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z),'build')),output='realtime'));
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Added April 14, 2019.
Problem Chapter 6.2.2.29, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
Where
Mathematica ✗
ClearAll["Global`*"]; f[n_]:= a[n] + b[n]*x + c[n]*y+ d[n]*z; pde = (f[0]*x - f[1])*D[w[x, y,z], x] +(f[0]*y-f[2])*D[w[x, y,z], y] +(f[0]*z -f[3])*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Failed
Maple ✗
restart; f:= n -> a[n] + b[n]*x + c[n]*y+ d[n]*z; pde := (f(0)*x - f(1))*diff(w(x,y,z),x)+(f(0)*y-f(2))*diff(w(x,y,z),y)+(f(0)*z -f(3))*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
sol=()
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________