7.8.15 6.2

7.8.15.1 [1850] Problem 1
7.8.15.2 [1851] Problem 2
7.8.15.3 [1852] Problem 3
7.8.15.4 [1853] Problem 4
7.8.15.5 [1854] Problem 5
7.8.15.6 [1855] Problem 6

7.8.15.1 [1850] Problem 1

problem number 1850

Added Oct 18, 2019.

Problem Chapter 8.6.2.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) wx+awy+bwz=ccosn(βx)w

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + a*D[w[x, y,z], y] +  b*D[w[x,y,z],z]== c*Cos[beta*x]^n*w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)c1(yax,zbx)exp(csin2(βx)csc(βx)cosn+1(βx)Hypergeometric2F1(12,n+12,n+32,cos2(βx))βn+β)}}

Maple

restart; 
local gamma; 
pde :=  diff(w(x,y,z),x)+a*diff(w(x,y,z),y)+ b*diff(w(x,y,z),z)= c*cos(beta*x)^n*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(ax+y,bx+z)ec(cosn(βx))dx

____________________________________________________________________________________

7.8.15.2 [1851] Problem 2

problem number 1851

Added Oct 18, 2019.

Problem Chapter 8.6.2.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) awx+bwy+ccos(βz)wz=(kcos(λx)+scos(γy))w

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*D[w[x, y,z], y] +  c*Cos[beta*z]*D[w[x,y,z],z]== (k*Cos[lambda*x]+s*Cos[gamma*y])*w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)eksin(λx)aλ+ssin(γy)bγc1(ybxa,cosh1(sec(βz)(2(2sec(βz)sin2(βz)cos2(βz)sinh2(βcxa)(cosh(4βcxa)sinh(4βcxa))+sinh3(βcxa)+sinh(βcxa))2cosh3(βcxa)+(13cosh(2βcxa))cosh(βcxa)+6sinh(βcxa)cosh2(βcxa))4cosh(2βcxa)4sinh(2βcxa))β)}}

Maple

restart; 
local gamma; 
pde :=  a*diff(w(x,y,z),x)+b*diff(w(x,y,z),y)+ c*cos(beta*z)*diff(w(x,y,z),z)= (k*cos(lambda*x)+s*cos(gamma*y))*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(aybxa,aln(RootOf(βzarctan(_Z2e2βcxa1_Z2e2βcxa+1,2_Zeβcxa_Z2e2βcxa+1)))βc)eaλssin(γy)+bγksin(λx)abγλ

____________________________________________________________________________________

7.8.15.3 [1852] Problem 3

problem number 1852

Added Oct 18, 2019.

Problem Chapter 8.6.2.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) wx+acosn(βx)wy+bcosk(λx)wz=ccosm(γx)w

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + a*Cos[beta*x]^n*D[w[x, y,z], y] +  b*Cos[lambda*x]^k*D[w[x,y,z],z]== c*Cos[gamma*x]^m*w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)exp(csin2(γx)csc(γx)cosm+1(γx)Hypergeometric2F1(12,m+12,m+32,cos2(γx))γm+γ)c1(asin2(βx)csc(βx)cosn+1(βx)Hypergeometric2F1(12,n+12,n+32,cos2(βx))βn+β+y,bsin2(λx)csc(λx)cosk+1(λx)Hypergeometric2F1(12,k+12,k+32,cos2(λx))kλ+λ+z)}}

Maple

restart; 
local gamma; 
pde :=  diff(w(x,y,z),x)+a*cos(beta*x)^n*diff(w(x,y,z),y)+ b*cos(lambda*x)^k*diff(w(x,y,z),z)= c*cos(gamma*x)^m*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(y(a(cosn(βx))dx),z(b(cosk(λx))dx))ec(cosm(γx))dx

____________________________________________________________________________________

7.8.15.4 [1853] Problem 4

problem number 1853

Added Oct 18, 2019.

Problem Chapter 8.6.2.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) wx+acosn(βx)wy+bcosm(γy)wz=(ccosk(γy)+scosr(μz))w

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + a*Cos[beta*x]^n*D[w[x, y,z], y] +  b*Cos[gamma*y]^m*D[w[x,y,z],z]== (c*Cos[gamma*y]^k+s*Cos[mu*z]^r)*w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

Failed

Maple

restart; 
local gamma; 
pde :=  diff(w(x,y,z),x)+a*cos(beta*x)^n*diff(w(x,y,z),y)+ b*cos(gamma*y)^m*diff(w(x,y,z),z)= (c*cos(gamma*y)^k+s*cos(mu*z)^r)*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(y(a(cosn(βx))dx),z(xb(cosm((a((cosn(_bβ))d_b)+y(a(cosn(βx))dx))γ))d_b))ex(c(cosk((y(a(cosn(_gβ))d_g)+a(cosn(βx))dx)γ))+s(cosr((z+b(cosm((a((cosn(_gβ))d_g)+y(a(cosn(βx))dx))γ))d_g(xb(cosm((a((cosn(_bβ))d_b)+y(a(cosn(βx))dx))γ))d_b))μ)))d_g

____________________________________________________________________________________

7.8.15.5 [1854] Problem 5

problem number 1854

Added Oct 18, 2019.

Problem Chapter 8.6.2.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) awx+bcos(βy)wy+ccos(λx)wz=kcos(γz)w

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*Cos[beta*y]*D[w[x, y,z], y] +  c*Cos[lambda*x]^m*D[w[x,y,z],z]== k*Cos[gamma*z]*w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{w(x,y,z)c1(cosh1(sec(βy)(2(2sec(βy)sin2(βy)cos2(βy)sinh2(bβxa)(cosh(4bβxa)sinh(4bβxa))+sinh3(bβxa)+sinh(bβxa))2cosh3(bβxa)+(13cosh(2bβxa))cosh(bβxa)+6sinh(bβxa)cosh2(bβxa))4cosh(2bβxa)4sinh(2bβxa))β,csin2(λx)csc(λx)cosm+1(λx)Hypergeometric2F1(12,m+12,m+32,cos2(λx))aλm+aλ+z)exp(1xkcos(γ(ccsc(λx)Hypergeometric2F1(12,m+12,m+32,cos2(λx))sin2(λx)cosm+1(λx)+aλ(m+1)zccosm+1(λK[1])csc(λK[1])Hypergeometric2F1(12,m+12,m+32,cos2(λK[1]))sin2(λK[1]))aλ(m+1))adK[1])}{w(x,y,z)c1(cosh1(sec(βy)(2(2sec(βy)sin2(βy)cos2(βy)sinh2(bβxa)(cosh(4bβxa)sinh(4bβxa))+sinh3(bβxa)+sinh(bβxa))2cosh3(bβxa)+(13cosh(2bβxa))cosh(bβxa)+6sinh(bβxa)cosh2(bβxa))4cosh(2bβxa)4sinh(2bβxa))β,csin2(λx)csc(λx)cosm+1(λx)Hypergeometric2F1(12,m+12,m+32,cos2(λx))aλm+aλ+z)exp(1xkcos(γ(ccsc(λx)Hypergeometric2F1(12,m+12,m+32,cos2(λx))sin2(λx)cosm+1(λx)+aλ(m+1)zccosm+1(λK[2])csc(λK[2])Hypergeometric2F1(12,m+12,m+32,cos2(λK[2]))sin2(λK[2]))aλ(m+1))adK[2])}{w(x,y,z)c1(cosh1(sec(βy)(2(2sec(βy)sin2(βy)cos2(βy)sinh2(bβxa)(cosh(4bβxa)sinh(4bβxa))+sinh3(bβxa)+sinh(bβxa))2cosh3(bβxa)+(13cosh(2bβxa))cosh(bβxa)+6sinh(bβxa)cosh2(bβxa))4cosh(2bβxa)4sinh(2bβxa))β,csin2(λx)csc(λx)cosm+1(λx)Hypergeometric2F1(12,m+12,m+32,cos2(λx))aλm+aλ+z)exp(1xkcos(γ(ccsc(λx)Hypergeometric2F1(12,m+12,m+32,cos2(λx))sin2(λx)cosm+1(λx)+aλ(m+1)zccosm+1(λK[3])csc(λK[3])Hypergeometric2F1(12,m+12,m+32,cos2(λK[3]))sin2(λK[3]))aλ(m+1))adK[3])}{w(x,y,z)c1(cosh1(sec(βy)(2(2sec(βy)sin2(βy)cos2(βy)sinh2(bβxa)(cosh(4bβxa)sinh(4bβxa))+sinh3(bβxa)+sinh(bβxa))2cosh3(bβxa)+(13cosh(2bβxa))cosh(bβxa)+6sinh(bβxa)cosh2(bβxa))4cosh(2bβxa)4sinh(2bβxa))β,csin2(λx)csc(λx)cosm+1(λx)Hypergeometric2F1(12,m+12,m+32,cos2(λx))aλm+aλ+z)exp(1xkcos(γ(ccsc(λx)Hypergeometric2F1(12,m+12,m+32,cos2(λx))sin2(λx)cosm+1(λx)+aλ(m+1)zccosm+1(λK[4])csc(λK[4])Hypergeometric2F1(12,m+12,m+32,cos2(λK[4]))sin2(λK[4]))aλ(m+1))adK[4])}{w(x,y,z)c1(cosh1(sec(βy)(2(2sec(βy)sin2(βy)cos2(βy)sinh2(bβxa)(cosh(4bβxa)sinh(4bβxa))+sinh3(bβxa)+sinh(bβxa))2cosh3(bβxa)+(13cosh(2bβxa))cosh(bβxa)+6sinh(bβxa)cosh2(bβxa))4cosh(2bβxa)4sinh(2bβxa))β,csin2(λx)csc(λx)cosm+1(λx)Hypergeometric2F1(12,m+12,m+32,cos2(λx))aλm+aλ+z)exp(1xkcos(γ(ccsc(λx)Hypergeometric2F1(12,m+12,m+32,cos2(λx))sin2(λx)cosm+1(λx)+aλ(m+1)zccosm+1(λK[5])csc(λK[5])Hypergeometric2F1(12,m+12,m+32,cos2(λK[5]))sin2(λK[5]))aλ(m+1))adK[5])}{w(x,y,z)c1(cosh1(sec(βy)(2(2sec(βy)sin2(βy)cos2(βy)sinh2(bβxa)(cosh(4bβxa)sinh(4bβxa))+sinh3(bβxa)+sinh(bβxa))2cosh3(bβxa)+(13cosh(2bβxa))cosh(bβxa)+6sinh(bβxa)cosh2(bβxa))4cosh(2bβxa)4sinh(2bβxa))β,csin2(λx)csc(λx)cosm+1(λx)Hypergeometric2F1(12,m+12,m+32,cos2(λx))aλm+aλ+z)exp(1xkcos(γ(ccsc(λx)Hypergeometric2F1(12,m+12,m+32,cos2(λx))sin2(λx)cosm+1(λx)+aλ(m+1)zccosm+1(λK[6])csc(λK[6])Hypergeometric2F1(12,m+12,m+32,cos2(λK[6]))sin2(λK[6]))aλ(m+1))adK[6])}{w(x,y,z)c1(cosh1(sec(βy)(2(2sec(βy)sin2(βy)cos2(βy)sinh2(bβxa)(cosh(4bβxa)sinh(4bβxa))+sinh3(bβxa)+sinh(bβxa))2cosh3(bβxa)+(13cosh(2bβxa))cosh(bβxa)+6sinh(bβxa)cosh2(bβxa))4cosh(2bβxa)4sinh(2bβxa))β,csin2(λx)csc(λx)cosm+1(λx)Hypergeometric2F1(12,m+12,m+32,cos2(λx))aλm+aλ+z)exp(1xkcos(γ(ccsc(λx)Hypergeometric2F1(12,m+12,m+32,cos2(λx))sin2(λx)cosm+1(λx)+aλ(m+1)zccosm+1(λK[7])csc(λK[7])Hypergeometric2F1(12,m+12,m+32,cos2(λK[7]))sin2(λK[7]))aλ(m+1))adK[7])}{w(x,y,z)c1(cosh1(sec(βy)(2(2sec(βy)sin2(βy)cos2(βy)sinh2(bβxa)(cosh(4bβxa)sinh(4bβxa))+sinh3(bβxa)+sinh(bβxa))2cosh3(bβxa)+(13cosh(2bβxa))cosh(bβxa)+6sinh(bβxa)cosh2(bβxa))4cosh(2bβxa)4sinh(2bβxa))β,csin2(λx)csc(λx)cosm+1(λx)Hypergeometric2F1(12,m+12,m+32,cos2(λx))aλm+aλ+z)exp(1xkcos(γ(ccsc(λx)Hypergeometric2F1(12,m+12,m+32,cos2(λx))sin2(λx)cosm+1(λx)+aλ(m+1)zccosm+1(λK[8])csc(λK[8])Hypergeometric2F1(12,m+12,m+32,cos2(λK[8]))sin2(λK[8]))aλ(m+1))adK[8])}

Maple

restart; 
local gamma; 
pde :=  a*diff(w(x,y,z),x)+b*cos(beta*y)*diff(w(x,y,z),y)+ c*cos(lambda*x)^m*diff(w(x,y,z),z)= k*cos(gamma*z)*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(aln(RootOf(βyarctan(_Z2e2bβxa1_Z2e2bβxa+1,2_Zebβxa_Z2e2bβxa+1)))bβ,z(c(cosm(λx))adx))exkcos((z(c(cosm(_bλ))ad_b)+c(cosm(λx))adx)γ)ad_b

____________________________________________________________________________________

7.8.15.6 [1855] Problem 6

problem number 1855

Added Oct 18, 2019.

Problem Chapter 8.6.2.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) a1cosn1(λ1x)wx+b1cosm1(β1y)wy+c1cosk1(γ1z)wz=(a2cosn2(λ2x)+b2cosm2(β2y)+c2cosk2(γ2z))w

Mathematica

ClearAll["Global`*"]; 
pde =  a1*Cos[lambda1*z]^n1*D[w[x, y,z], x] + b1*Cos[beta1*y]^m1*D[w[x, y,z], y] + c1*Cos[gamma1*z]^k1*D[w[x,y,z],z]== (a2*Cos[lambda2*z]^n2 + b2*Cos[beta2*y]^m2 + c2*Cos[gamma2*z]^k2)*w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

$Aborted

Maple

restart; 
local gamma; 
pde :=  a1*cos(lambda1*z)^n1*diff(w(x,y,z),x)+ b1*cos(beta1*y)^m1*diff(w(x,y,z),y)+ c1*cos(gamma1*z)^k1*diff(w(x,y,z),z)= (a2*cos(lambda2*z)^n2 + b2*cos(beta2*y)^m2 + c2*cos(gamma2*z)^k2)*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(((cosm1(β1y))dy)+b1(cosk1(γ1z))c1dz,x(ya1(cosm1(_fβ1))(cosn1(λ1RootOf((cosm1(_fβ1))d_f((cosm1(β1y))dy)+b1(cosk1(γ1z))c1dz(_Zb1(cosk1(_bγ1))c1d_b))))b1d_f))ey(a2(cosn2(λ2RootOf((cosm1(_fβ1))d_f((cosm1(β1y))dy)+b1(cosk1(γ1z))c1dz(_Zb1(cosk1(_aγ1))c1d_a))))+b2(cosm2(_fβ2))+c2(cosk2(γ2RootOf((cosm1(_fβ1))d_f((cosm1(β1y))dy)+b1(cosk1(γ1z))c1dz(_Zb1(cosk1(_aγ1))c1d_a)))))(cosm1(_fβ1))b1d_f

____________________________________________________________________________________