7.7.20 7.1

7.7.20.1 [1703] Problem 1
7.7.20.2 [1704] Problem 2
7.7.20.3 [1705] Problem 3
7.7.20.4 [1706] Problem 4
7.7.20.5 [1707] Problem 5
7.7.20.6 [1708] Problem 6

7.7.20.1 [1703] Problem 1

problem number 1703

Added June 26, 2019.

Problem Chapter 7.7.1.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

wx+awy+bwz=carcsink(λx)+s

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + a*D[w[x, y,z], y] + b*D[w[x,y,z],z]==c*ArcSin[lambda*x]^k+s; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)c1(yax,zbx)+(sin1(λx)2)k(ic(isin1(λx))ksin1(λx)kGamma(k+1,isin1(λx))+ic(isin1(λx))ksin1(λx)kGamma(k+1,isin1(λx))+2λsx(sin1(λx)2)k)2λ}}

Maple

restart; 
local gamma; 
pde :=  diff(w(x,y,z),x)+ a*diff(w(x,y,z),y)+ b*diff(w(x,y,z),z)= c*arcsin(lambda*x)^k+s; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=sx+carcsin(λx)kdx+_F1(ax+y,bx+z)

____________________________________________________________________________________

7.7.20.2 [1704] Problem 2

problem number 1704

Added June 26, 2019.

Problem Chapter 7.7.1.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

a1wx+a2wy+a3wz=b1arcsin(λ1x)+b2arcsin(λ2y)+b3arcsin(λ3z)

Mathematica

ClearAll["Global`*"]; 
pde =  a1*D[w[x, y,z], x] + a2*D[w[x, y,z], y] + a3*D[w[x,y,z],z]== b1*ArcSin[lambda1*x]+b2*ArcSin[lambda2*y]+b3*ArcSin[lambda3*z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)c1(ya2xa1,za3xa1)+b11lambda12x2a1lambda1+b1xsin1(lambda1x)a1+b21lambda22y2a2lambda2+b2ysin1(lambda2y)a2+b31lambda32z2a3lambda3+b3zsin1(lambda3z)a3}}

Maple

restart; 
local gamma; 
pde :=  a1*diff(w(x,y,z),x)+ a2*diff(w(x,y,z),y)+ a3*diff(w(x,y,z),z)= b1*arcsin(lambda1*x)+b2*arcsin(lambda2*y)+b3*arcsin(lambda3*z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=a1a2a3λ1λ2λ3_F1(a1ya2xa1,a1za3xa1)+λ12x2+1a2a3b1λ2λ3+(λ22y2+1a1a3b2λ3+(a2a3b1λ3xarcsin(λ1x)+(a3b2λ3yarcsin(λ2y)+(λ3zarcsin(λ3z)+λ32z2+1)a2b3)a1)λ2)λ1a1a2a3λ1λ2λ3

____________________________________________________________________________________

7.7.20.3 [1705] Problem 3

problem number 1705

Added June 26, 2019.

Problem Chapter 7.7.1.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

awx+bwy+carcsinn(λx)arcsink(βz)wz=sarcsinm(γx)

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*D[w[x, y,z], y] + c*ArcSin[lambda*x]^n*ArcSin[beta*z]^k*D[w[x,y,z],z]== s*ArcSin[gamma*x]^m; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

Failed

Maple

restart; 
local gamma; 
pde :=  a*diff(w(x,y,z),x)+ b*diff(w(x,y,z),y)+ c*arcsin(lambda*x)^n*arcsin(beta*z)^k*diff(w(x,y,z),z)= s*arcsin(gamma*x)^m; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=sarcsin(γx)madx+_F1(aybxa,2((k1)(arcsin(λx)nLommelS1(n+32,12,arcsin(λx))arcsin(λx))(λ2x2+1)βcλx2n2n2+(λx1)(λx+1)(k1)(arcsin(λx)nLommelS1(n+32,12,arcsin(λx))arcsin(λx))λ2x2+1βc2n2narcsin(λx)2+(λx1)((n+1)(arcsin(βz)karcsin(βz)32+LommelS1(k+32,12,arcsin(βz))arcsin(βz))β2z2+1a2k2k2arcsin(βz)+((n+1)akz2k2kLommelS1(k+12,32,arcsin(βz))arcsin(βz)2+(k1)cnx2n2nLommelS1(n+12,32,arcsin(λx))arcsin(λx)2+(k1)cx2n2n1arcsin(λx)n+(n+1)az2k2kLommelS1(k+32,12,arcsin(βz))2arcsin(βz)+(n+1)(2k2+2k1)az2karcsin(βz)k)β)(λx+1)λ)(n+1)(λ2x21)(k1)βcλ)

____________________________________________________________________________________

7.7.20.4 [1706] Problem 4

problem number 1706

Added June 26, 2019.

Problem Chapter 7.7.1.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

awx+bwy+carcsinn(λx)arcsinm(βy)arcsink(γz)wz=s

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*D[w[x, y,z], y] + c*ArcSin[lambda*x]^n*ArcSin[beta*y]^m*ArcSin[gamma*z]^k*D[w[x,y,z],z]== s; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

Failed

Maple

restart; 
local gamma; 
pde :=  a*diff(w(x,y,z),x)+ b*diff(w(x,y,z),y)+ c*arcsin(lambda*x)^n*arcsin(beta*y)^m*arcsin(gamma*z)^k*diff(w(x,y,z),z)= s; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=sxa+_F1(aybxa,(xarcsin(_aλ)narcsin((ay(_a+x)b)βa)md_a)+(γkz2kLommelS1(k+12,32,arcsin(γz))arcsin(γz)γz2kLommelS1(k+32,12,arcsin(γz))+γ2z2+12kLommelS1(k+32,12,arcsin(γz))arcsin(γz)γ2z2+12karcsin(γz)k+32)a2k(k1)cγarcsin(γz))

____________________________________________________________________________________

7.7.20.5 [1707] Problem 5

problem number 1707

Added June 26, 2019.

Problem Chapter 7.7.1.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

awx+barcsinn(λx)wy+carcsink(βz)wz=sarcsinm(γx)

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*ArcSin[lambda*x]^n*D[w[x, y,z], y] + c*ArcSin[beta*z]^k*D[w[x,y,z],z]== s*ArcSin[gamma*x]^m; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)1zssin1(γ(ia(isin1(βz))kGamma(1k,isin1(βz))sin1(βz)kia(isin1(βz))kGamma(1k,isin1(βz))sin1(βz)k+sin1(βK[1])k(iaGamma(1k,isin1(βK[1]))(isin1(βK[1]))k+2βcxsin1(βK[1])k+ia(isin1(βK[1]))kGamma(1k,isin1(βK[1]))))2βc)msin1(βK[1])kcdK[1]+c1(cxaisin1(βz)k((isin1(βz))kGamma(1k,isin1(βz))(isin1(βz))kGamma(1k,isin1(βz)))2β,(sin1(λx)2)n(ib(isin1(λx))nsin1(λx)nGamma(n+1,isin1(λx))ib(isin1(λx))nsin1(λx)nGamma(n+1,isin1(λx))+2aλy(sin1(λx)2)n)2aλ)}} Generates Solve::incnst: Inconsistent or redundant transcendental equation

Maple

restart; 
local gamma; 
pde :=  a*diff(w(x,y,z),x)+ b*arcsin(lambda*x)^n*diff(w(x,y,z),y)+ c*arcsin(beta*z)^k*diff(w(x,y,z),z)= s*arcsin(gamma*x)^m; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

time expired

____________________________________________________________________________________

7.7.20.6 [1708] Problem 6

problem number 1708

Added June 26, 2019.

Problem Chapter 7.7.1.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

awx+barcsinn(λx)wy+carcsink(βz)wz=s

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*ArcSin[lambda*x]^n*D[w[x, y,z], y] + c*ArcSin[beta*z]^k*D[w[x,y,z],z]== s; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)c1(cxaisin1(βz)k((isin1(βz))kGamma(1k,isin1(βz))(isin1(βz))kGamma(1k,isin1(βz)))2β,(sin1(λx)2)n(ib(isin1(λx))nsin1(λx)nGamma(n+1,isin1(λx))ib(isin1(λx))nsin1(λx)nGamma(n+1,isin1(λx))+2aλy(sin1(λx)2)n)2aλ)issin1(βz)k((isin1(βz))kGamma(1k,isin1(βz))(isin1(βz))kGamma(1k,isin1(βz)))2βc}} Generates Solve::incnst: Inconsistent or redundant transcendental equation

Maple

restart; 
local gamma; 
pde :=  a*diff(w(x,y,z),x)+ b*arcsin(lambda*x)^n*diff(w(x,y,z),y)+ c*arcsin(beta*z)^k*diff(w(x,y,z),z)= s; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

time expired

____________________________________________________________________________________