Added June 26, 2019.
Problem Chapter 7.6.4.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + a*D[w[x, y,z], y] + c*D[w[x,y,z],z]== c*Cot[lambda*x]^k+s; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; local gamma; pde := diff(w(x,y,z),x)+ a*diff(w(x,y,z),y)+ b*diff(w(x,y,z),z)= c*cot(lambda*x)^k+s; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
____________________________________________________________________________________
Added June 26, 2019.
Problem Chapter 7.6.4.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y,z], x] + b*D[w[x, y,z], y] + c*Cot[gamma*z]*D[w[x,y,z],z]== k*Cot[lambda*x]+s*Cot[beta*y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; local gamma; pde := a*diff(w(x,y,z),x)+ b*diff(w(x,y,z),y)+ c*cot(gamma*z)*diff(w(x,y,z),z)= k*cot(lambda*x)+s*cot(beta*y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
____________________________________________________________________________________
Added June 26, 2019.
Problem Chapter 7.6.4.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + a*Cot[beta*x]^n*D[w[x, y,z], y] + b*Cot[lambda*x]^k*D[w[x,y,z],z]== c*Cot[gamma*x]^m+s; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; local gamma; pde := diff(w(x,y,z),x)+ a*cot(beta*x)^n*diff(w(x,y,z),y)+ b*cot(lambda*x)^k*diff(w(x,y,z),z)= c*cot(gamma*x)^m+s; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
____________________________________________________________________________________
Added June 26, 2019.
Problem Chapter 7.6.4.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + a*Cot[lambda*x]^n*D[w[x, y,z], y] + b*Cot[beta*x]^m*D[w[x,y,z],z]== c*Cot[gamma*y]^k+s*Cot[mu*z]^r; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; local gamma; pde := diff(w(x,y,z),x)+ a*cot(lambda*x)^n*diff(w(x,y,z),y)+ b*cot(beta*x)^m*diff(w(x,y,z),z)= c*cot(gamma*y)^k+s*cot(mu*z)^r; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
____________________________________________________________________________________
Added June 26, 2019.
Problem Chapter 7.6.4.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y,z], x] + b*Cot[beta*x]*D[w[x, y,z], y] + c*Cot[lambda*x]*D[w[x,y,z],z]== k*Cot[gamma*z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
Maple ✓
restart; local gamma; pde := a*diff(w(x,y,z),x)+ b*cot(beta*x)*diff(w(x,y,z),y)+ c*cot(lambda*x)*diff(w(x,y,z),z)= k*cot(gamma*z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
____________________________________________________________________________________