7.7.17 6.4

7.7.17.1 [1692] Problem 1
7.7.17.2 [1693] Problem 2
7.7.17.3 [1694] Problem 3
7.7.17.4 [1695] Problem 4
7.7.17.5 [1696] Problem 5

7.7.17.1 [1692] Problem 1

problem number 1692

Added June 26, 2019.

Problem Chapter 7.6.4.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

wx+awy+bwz=ccotk(λx)+s

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + a*D[w[x, y,z], y] +  c*D[w[x,y,z],z]== c*Cot[lambda*x]^k+s; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)c1(yax,zcx)ccotk+1(λx)Hypergeometric2F1(1,k+12,k+32,cot2(λx))kλ+λ+sx}}

Maple

restart; 
local gamma; 
pde :=  diff(w(x,y,z),x)+ a*diff(w(x,y,z),y)+ b*diff(w(x,y,z),z)= c*cot(lambda*x)^k+s; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=sx+c(cotk(λx))dx+_F1(ax+y,bx+z)

____________________________________________________________________________________

7.7.17.2 [1693] Problem 2

problem number 1693

Added June 26, 2019.

Problem Chapter 7.6.4.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

awx+bwy+ccot(γz)wz=kcot(λx)+scot(βy)

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*D[w[x, y,z], y] +  c*Cot[gamma*z]*D[w[x,y,z],z]== k*Cot[lambda*x]+s*Cot[beta*y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)aλslog(tan(βy))+aλslog(cos(βy))+bβklog(sin(λx))abβλ+c1(ybxa,log(sec(γz))γcxa)}}

Maple

restart; 
local gamma; 
pde :=  a*diff(w(x,y,z),x)+ b*diff(w(x,y,z),y)+ c*cot(gamma*z)*diff(w(x,y,z),z)= k*cot(lambda*x)+s*cot(beta*y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=2abβλ_F1(ay+bxb,2cγy+bln(cot2(γz)+1)2bln(cot(γz))2cγ)aλsln(cot2(βy)+1)bβkln(cot2(λx)+1)2abβλ

____________________________________________________________________________________

7.7.17.3 [1694] Problem 3

problem number 1694

Added June 26, 2019.

Problem Chapter 7.6.4.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

wx+acotn(βx)wy+bcotk(λx)wz=ccotm(γx)+s

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + a*Cot[beta*x]^n*D[w[x, y,z], y] +  b*Cot[lambda*x]^k*D[w[x,y,z],z]== c*Cot[gamma*x]^m+s; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)c1(bcotk+1(λx)Hypergeometric2F1(1,k+12,k+32,cot2(λx))kλ+λ+z,acotn+1(βx)Hypergeometric2F1(1,n+12,n+32,cot2(βx))βn+β+y)ccotm+1(γx)Hypergeometric2F1(1,m+12,m+32,cot2(γx))γm+γ+sx}}

Maple

restart; 
local gamma; 
pde :=  diff(w(x,y,z),x)+ a*cot(beta*x)^n*diff(w(x,y,z),y)+ b*cot(lambda*x)^k*diff(w(x,y,z),z)= c*cot(gamma*x)^m+s; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=sx+c(cotm(γx))dx+_F1(y(a(cotn(βx))dx),z(b(cotk(λx))dx))

____________________________________________________________________________________

7.7.17.4 [1695] Problem 4

problem number 1695

Added June 26, 2019.

Problem Chapter 7.6.4.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

wx+acotn(λx)wy+bcotm(βy)wz=ccotk(γy)+scotr(μz)

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + a*Cot[lambda*x]^n*D[w[x, y,z], y] +  b*Cot[beta*x]^m*D[w[x,y,z],z]== c*Cot[gamma*y]^k+s*Cot[mu*z]^r; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)1x(ccotk(γ(aHypergeometric2F1(1,n+12,n+32,cot2(λx))cotn+1(λx)+λ(n+1)yacotn+1(λK[1])Hypergeometric2F1(1,n+12,n+32,cot2(λK[1])))λ(n+1))+scotr(μ(bHypergeometric2F1(1,m+12,m+32,cot2(βx))cotm+1(βx)+β(m+1)zbcotm+1(βK[1])Hypergeometric2F1(1,m+12,m+32,cot2(βK[1])))β(m+1)))dK[1]+c1(bcotm+1(βx)Hypergeometric2F1(1,m+12,m+32,cot2(βx))βm+β+z,acotn+1(λx)Hypergeometric2F1(1,n+12,n+32,cot2(λx))λn+λ+y)}}

Maple

restart; 
local gamma; 
pde :=  diff(w(x,y,z),x)+ a*cot(lambda*x)^n*diff(w(x,y,z),y)+ b*cot(beta*x)^m*diff(w(x,y,z),z)= c*cot(gamma*y)^k+s*cot(mu*z)^r; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=x(c(cot((y(a(cotn(λx))dx))γ)cot(aγ((cotn(_fλ))d_f))1cot((y(a(cotn(λx))dx))γ)+cot(aγ((cotn(_fλ))d_f)))k+s(cot((z(b(cotm(βx))dx))μ)cot(bμ((cotm(_fβ))d_f))1cot((z(b(cotm(βx))dx))μ)+cot(bμ((cotm(_fβ))d_f)))r)d_f+_F1(y(a(cotn(λx))dx),z(b(cotm(βx))dx))

____________________________________________________________________________________

7.7.17.5 [1696] Problem 5

problem number 1696

Added June 26, 2019.

Problem Chapter 7.6.4.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

awx+bcot(βx)wy+ccot(λx)wz=kcot(γz)

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*Cot[beta*x]*D[w[x, y,z], y] +  c*Cot[lambda*x]*D[w[x,y,z],z]== k*Cot[gamma*z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)1xkcot(γ(aλzclog(sin(λx))+clog(sin(λK[1])))aλ)adK[1]+c1(yblog(sin(βx))aβ,zclog(sin(λx))aλ)}}

Maple

restart; 
local gamma; 
pde :=  a*diff(w(x,y,z),x)+ b*cot(beta*x)*diff(w(x,y,z),y)+ c*cot(lambda*x)*diff(w(x,y,z),z)= k*cot(gamma*z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=x(cot((2aλz+cln(cot2(λx)+1))γ2aλ)cot(cγln(cot2(_aλ)+1)2aλ)+1)k(cot((2aλz+cln(cot2(λx)+1))γ2aλ)+cot(cγln(cot2(_aλ)+1)2aλ))ad_a+_F1(2aβy+bln(cot2(βx)+1)2aβ,2aλz+cln(cot2(λx)+1)2aλ)

____________________________________________________________________________________