7.6.25 8.3

7.6.25.1 [1569] Problem 1
7.6.25.2 [1570] Problem 2
7.6.25.3 [1571] Problem 3
7.6.25.4 [1572] Problem 4
7.6.25.5 [1573] Problem 5
7.6.25.6 [1574] Problem 6
7.6.25.7 [1575] Problem 7
7.6.25.8 [1576] Problem 8
7.6.25.9 [1577] Problem 9
7.6.25.10 [1578] Problem 10
7.6.25.11 [1579] Problem 11
7.6.25.12 [1580] Problem 12

7.6.25.1 [1569] Problem 1

problem number 1569

Added May 31, 2019.

Problem Chapter 6.8.3.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

awx+bwy+f(x,y)wz=0

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*D[w[x, y,z], y] +f[x,y]*D[w[x,y,z],z]==0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)c1(ybxa,z1xf(K[1],y+b(K[1]x)a)adK[1])}}

Maple

restart; 
pde :=  a*diff(w(x,y,z),x)+  b*diff(w(x,y,z),y)+f(x,y)*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(aybxa,z(xf(_a,ay(_a+x)ba)ad_a))

____________________________________________________________________________________

7.6.25.2 [1570] Problem 2

problem number 1570

Added May 31, 2019.

Problem Chapter 6.8.3.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

awx+bwy+f(x,y)g(z)wz=0

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*D[w[x, y,z], y] +f[x,y]*g[z]*D[w[x,y,z],z]==0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)c1(ybxa,1z1g(K[1])dK[1]1xf(K[2],y+b(K[2]x)a)adK[2])}}

Maple

restart; 
pde :=  a*diff(w(x,y,z),x)+  b*diff(w(x,y,z),y)+f(x,y)*g(z)*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(aybxa,ag(z)dz(xf(_a,ay(_a+x)ba)d_a))

____________________________________________________________________________________

7.6.25.3 [1571] Problem 3

problem number 1571

Added May 31, 2019.

Problem Chapter 6.8.3.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

xwx+ywy+(z+f(x,y))wz=0

Mathematica

ClearAll["Global`*"]; 
pde =  x*D[w[x, y,z], x] + y*D[w[x, y,z], y] +(z+f[x,y])*D[w[x,y,z],z]==0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)c1(yx,zx1xf(K[1],yK[1]x)K[1]2dK[1])}}

Maple

restart; 
pde :=  x*diff(w(x,y,z),x)+  y*diff(w(x,y,z),y)+(z+f(x,y))*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(yx,x(xf(_a,_ayx)_a2d_a)+zx)

____________________________________________________________________________________

7.6.25.4 [1572] Problem 4

problem number 1572

Added May 31, 2019.

Problem Chapter 6.8.3.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

axwx+bywy+f(x,y)wz=0

Mathematica

ClearAll["Global`*"]; 
pde =  a*x*D[w[x, y,z], x] + b*y*D[w[x, y,z], y] +f[x,y]*D[w[x,y,z],z]==0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)c1(yxba,z1xf(K[1],xbayK[1]ba)aK[1]dK[1])}}

Maple

restart; 
pde :=  a*x*diff(w(x,y,z),x)+  b*y*diff(w(x,y,z),y)+f(x,y)*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(yxba,z(xf(_a,y_abaxba)_aad_a))

____________________________________________________________________________________

7.6.25.5 [1573] Problem 5

problem number 1573

Added May 31, 2019.

Problem Chapter 6.8.3.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

axwx+bywy+f(x,y)g(z)wz=0

Mathematica

ClearAll["Global`*"]; 
pde =  a*x*D[w[x, y,z], x] + b*y*D[w[x, y,z], y] +f[x,y]*g[x]*D[w[x,y,z],z]==0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)c1(yxba,z1xf(K[1],xbayK[1]ba)g(K[1])aK[1]dK[1])}}

Maple

restart; 
pde :=  a*x*diff(w(x,y,z),x)+  b*y*diff(w(x,y,z),y)+f(x,y)*g(z)*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(yxba,ag(z)dz(xf(_a,y_abaxba)_ad_a))

____________________________________________________________________________________

7.6.25.6 [1574] Problem 6

problem number 1574

Added May 31, 2019.

Problem Chapter 6.8.3.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

wx+(f1(x)y+f2(x))wy+(g(x,y)z+h(x,y))wz=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + (f1[x]*y+f2[x])*D[w[x, y,z], y] +(g[x,y]*z+h[x,y])*D[w[x,y,z],z]==0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)c1(yexp(1xf1(K[1])dK[1])1xexp(1K[2]f1(K[1])dK[1])f2(K[2])dK[2],zexp(1xg(K[3],exp(1K[3]f1(K[1])dK[1])(exp(1xf1(K[1])dK[1])y1xexp(1K[2]f1(K[1])dK[1])f2(K[2])dK[2]+1K[3]exp(1K[2]f1(K[1])dK[1])f2(K[2])dK[2]))dK[3])1xexp(1K[4]InverseFunction[Inactive[Integrate],1,2][log(exp(1xg(K[3],exp(1K[3]f1(K[1])dK[1])(exp(1xf1(K[1])dK[1])y1xexp(1K[2]f1(K[1])dK[1])f2(K[2])dK[2]+1K[3]exp(1K[2]f1(K[1])dK[1])f2(K[2])dK[2]))dK[3])),{K[3],1,x}]dK[3])h(K[4],exp(1K[4]f1(K[1])dK[1])(exp(1xf1(K[1])dK[1])y1xexp(1K[2]f1(K[1])dK[1])f2(K[2])dK[2]+1K[4]exp(1K[2]f1(K[1])dK[1])f2(K[2])dK[2]))dK[4])}}

Maple

restart; 
pde := diff(w(x,y,z),x)+ (f1(x)*y+f2(x))*diff(w(x,y,z),y)+(g(x,y)*z+h(x,y))*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(ye(f1(x)dx)(e(f1(x)dx)f2(x)dx),ze(xg(_f,(ye(f1(x)dx)+e(f1(_f)d_f)f2(_f)d_f(e(f1(x)dx)f2(x)dx))ef1(_f)d_f)d_f)(xe(g(_a,(ye(f1(x)dx)+e(f1(_a)d_a)f2(_a)d_a(e(f1(x)dx)f2(x)dx))ef1(_a)d_a)d_a)h(_a,(ye(f1(x)dx)+e(f1(_a)d_a)f2(_a)d_a(e(f1(x)dx)f2(x)dx))ef1(_a)d_a)d_a))

____________________________________________________________________________________

7.6.25.7 [1575] Problem 7

problem number 1575

Added May 31, 2019.

Problem Chapter 6.8.3.7, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

wx+(f1(x)y+f2(x)yk)wy+(g(x,y)z+h(x,y)zm)wz=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + (f1[x]*y+f2[x]*y^k)*D[w[x, y,z], y] +(g[x,y]*z+h[x,y]*z^m)*D[w[x,y,z],z]==0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)c1((k1)1xexp((k1)1K[2]f1(K[1])dK[1])f2(K[2])dK[2]+y1kexp((k1)1xf1(K[1])dK[1]),(m1)1xexp((m1)1K[4]InverseFunction[Inactive[Integrate],1,2][log(exp(((m1)1xg(K[3],(exp(1xf1(K[1])dK[1](k1)1K[3]f1(K[1])dK[1])yk(exp(1xf1(K[1])dK[1])(k1)1xexp((k1)1K[2]f1(K[1])dK[1])f2(K[2])dK[2]ykexp(1xf1(K[1])dK[1])(k1)1K[3]exp((k1)1K[2]f1(K[1])dK[1])f2(K[2])dK[2]yk+exp(k1xf1(K[1])dK[1])y))11k)dK[3])))m1,{K[3],1,x}]dK[3])h(K[4],(exp(1xf1(K[1])dK[1](k1)1K[4]f1(K[1])dK[1])yk(exp(1xf1(K[1])dK[1])(k1)1xexp((k1)1K[2]f1(K[1])dK[1])f2(K[2])dK[2]ykexp(1xf1(K[1])dK[1])(k1)1K[4]exp((k1)1K[2]f1(K[1])dK[1])f2(K[2])dK[2]yk+exp(k1xf1(K[1])dK[1])y))11k)dK[4]+z1mexp((m1)1xg(K[3],(exp(1xf1(K[1])dK[1](k1)1K[3]f1(K[1])dK[1])yk(exp(1xf1(K[1])dK[1])(k1)1xexp((k1)1K[2]f1(K[1])dK[1])f2(K[2])dK[2]ykexp(1xf1(K[1])dK[1])(k1)1K[3]exp((k1)1K[2]f1(K[1])dK[1])f2(K[2])dK[2]yk+exp(k1xf1(K[1])dK[1])y))11k)dK[3]))}}

Maple

restart; 
pde := diff(w(x,y,z),x)+ (f1(x)*y+f2(x)*y^k)*diff(w(x,y,z),y)+(g(x,y)*z+h(x,y)*z^m)*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(yk+1e(k1)(f1(x)dx)+(k1)(e(k1)(f1(x)dx)f2(x)dx),zm+1e(m1)(xg(_f,(yk+1e(k1)(f1(x)dx)+(k1)(e(k1)(f1(x)dx)f2(x)dx)+(k+1)(e(k1)(f1(_f)d_f)f2(_f)d_f))1k1ef1(_f)d_f)d_f)+(m1)(xe(m1)(g(_h,(yk+1e(k1)(f1(x)dx)+(k1)(e(k1)(f1(x)dx)f2(x)dx)+(k+1)(e(k1)(f1(_h)d_h)f2(_h)d_h))1k1ef1(_h)d_h)d_h)h(_h,(yk+1e(k1)(f1(x)dx)+(k1)(e(k1)(f1(x)dx)f2(x)dx)+(k+1)(e(k1)(f1(_g)d_g)f2(_g)d_g))1k1ef1(_h)d_h)d_h))

____________________________________________________________________________________

7.6.25.8 [1576] Problem 8

problem number 1576

Added May 31, 2019.

Problem Chapter 6.8.3.8, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

wx+(f1(x)y+f2(x)yk)wy+(g(x,y)+h(x,y)eλz)wz=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + (f1[x]*y+f2[x]*y^k)*D[w[x, y,z], y] +(g[x,y]*z+h[x,y]*Exp[lambda*z])*D[w[x,y,z],z]==0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

Failed

Maple

restart; 
pde := diff(w(x,y,z),x)+ (f1(x)*y+f2(x)*y^k)*diff(w(x,y,z),y)+(g(x,y)*z+h(x,y)*exp(lambda*z))*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

time expired

____________________________________________________________________________________

7.6.25.9 [1577] Problem 9

problem number 1577

Added May 31, 2019.

Problem Chapter 6.8.3.9, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

wx+(f1(x)+f2(x)eλy)wy+(g(x,y)z+h(x,y)zk)wz=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + (f1[x]+f2[x]*Exp[lambda*y])*D[w[x, y,z], y] +(g[x,y]*z+h[x,y]*z^k)*D[w[x,y,z],z]==0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

Failed

Maple

restart; 
pde := diff(w(x,y,z),x)+ (f1(x)+f2(x)*exp(lambda*y))*diff(w(x,y,z),y)+(g(x,y)*z+h(x,y)*z^k)*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(λ(eλ(f1(x)dx)f2(x)dx)e(y(f1(x)dx))λλ,zk+1e(k1)(xg(_a,λ(f1(_a)d_a)+ln(1((eλ(f1(_a)d_a)f2(_a)d_a)+eλ(f1(x)dx)f2(x)dx)λ+e(y(f1(x)dx))λ)λ)d_a)+(k1)(xe(k1)(g(_f,λ(f1(_f)d_f)+ln(1((eλ(f1(_f)d_f)f2(_f)d_f)+eλ(f1(x)dx)f2(x)dx)λ+e(y(f1(x)dx))λ)λ)d_f)h(_f,λ(f1(_f)d_f)+ln(1((eλ(f1(_f)d_f)f2(_f)d_f)+eλ(f1(x)dx)f2(x)dx)λ+e(y(f1(x)dx))λ)λ)d_f))

____________________________________________________________________________________

7.6.25.10 [1578] Problem 10

problem number 1578

Added May 31, 2019.

Problem Chapter 6.8.3.10, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

wx+(f1(x)+f2(x)eλy)wy+(g(x,y)+h(x,y)eβz)wz=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + (f1[x]+f2[x]*Exp[lambda*y])*D[w[x, y,z], y] +(g[x,y]+h[x,y]*Exp[beta*z])*D[w[x,y,z],z]==0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

Failed

Maple

restart; 
pde := diff(w(x,y,z),x)+ (f1(x)+f2(x)*exp(lambda*y))*diff(w(x,y,z),y)+(g(x,y)+h(x,y)*exp(beta*z))*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(λ(eλ(f1(x)dx)f2(x)dx)e(y(f1(x)dx))λλ,β(xeβ(g(_g,λ(f1(_g)d_g)+ln(1((eλ(f1(_g)d_g)f2(_g)d_g)+eλ(f1(x)dx)f2(x)dx)λ+e(y(f1(x)dx))λ)λ)d_g)h(_g,λ(f1(_g)d_g)+ln(1((eλ(f1(_g)d_g)f2(_g)d_g)+eλ(f1(x)dx)f2(x)dx)λ+e(y(f1(x)dx))λ)λ)d_g)e(z+xg(_a,λ(f1(_a)d_a)+ln(1((eλ(f1(_a)d_a)f2(_a)d_a)+eλ(f1(x)dx)f2(x)dx)λ+e(y(f1(x)dx))λ)λ)d_a)ββ)

____________________________________________________________________________________

7.6.25.11 [1579] Problem 11

problem number 1579

Added May 31, 2019.

Problem Chapter 6.8.3.11, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

f1(x)g1(y)wx+f2(x)g2(y)wy+(h1(x,y)+h2(x,y)zm)wz=0

Mathematica

ClearAll["Global`*"]; 
pde =  f1[x]*g1[y]*D[w[x, y,z], x] + f2[x]*g2[y]*D[w[x, y,z], y] +(h1[x,y]+h2[x,y]*z^m)*D[w[x,y,z],z]==0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

Failed

Maple

restart; 
pde := f1(x)*g1(y)*diff(w(x,y,z),x)+ f2(x)*g2(y)*diff(w(x,y,z),y)+(h1(x,y)+h2(x,y)*z^m)*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

sol=()

____________________________________________________________________________________

7.6.25.12 [1580] Problem 12

problem number 1580

Added May 31, 2019.

Problem Chapter 6.8.3.12, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

f1(x)g1(y)wx+f2(x)g2(y)wy+(h1(x,y)+h2(x,y)eλz)wz=0

Mathematica

ClearAll["Global`*"]; 
pde =  f1[x]*g1[y]*D[w[x, y,z], x] + f2[x]*g2[y]*D[w[x, y,z], y] +(h1[x,y]+h2[x,y]*Exp[lambda*z])*D[w[x,y,z],z]==0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

Failed

Maple

restart; 
pde := f1(x)*g1(y)*diff(w(x,y,z),x)+ f2(x)*g2(y)*diff(w(x,y,z),y)+(h1(x,y)+h2(x,y)*exp(lambda*z))*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

sol=()