7.6.20 7.2

7.6.20.1 [1537] Problem 1
7.6.20.2 [1538] Problem 2
7.6.20.3 [1539] Problem 3
7.6.20.4 [1540] Problem 4
7.6.20.5 [1541] Problem 5

7.6.20.1 [1537] Problem 1

problem number 1537

Added May 31, 2019.

Problem Chapter 6.7.2.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

awx+bwy+carccosn(λx)arccosk(βz)wz=0

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*D[w[x, y,z], y] +c*ArcCos[lambda*x]^n*ArcCos[beta*z]^k*D[w[x,y,z],z]==0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)c1(ybxa,1xccos1(λK[1])nadK[1]+cos1(βz)k((icos1(βz))kGamma(1k,icos1(βz))+(icos1(βz))kGamma(1k,icos1(βz)))2β)}}

Maple

restart; 
pde :=  a*diff(w(x,y,z),x)+ b*diff(w(x,y,z),y)+c*arccos(lambda*x)^n*arccos(beta*z)^k*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(aybxa,π(λ2x2+12nLommelS1(n+32,32,arccos(λx))arccos(λx)π(n+2)+λ2x2+12narccos(λx)n+1π(n+2)3(2n3+43)(λxarccos(λx)λ2x2+1)2n1LommelS1(n+12,12,arccos(λx))π(n+2)arccos(λx))2nλ+(2βkz2k1LommelS1(k+12,12,arccos(βz))arccos(βz)4βz2k1LommelS1(k+12,12,arccos(βz))arccos(βz)2β2z2+1k2k1LommelS1(k+12,12,arccos(βz))β2z2+12kLommelS1(k+32,32,arccos(βz))arccos(βz)+β2z2+12karccos(βz)k+1arccos(βz)+4β2z2+12k1LommelS1(k+12,12,arccos(βz)))a2k(k2)βcarccos(βz))

____________________________________________________________________________________

7.6.20.2 [1538] Problem 2

problem number 1538

Added May 31, 2019.

Problem Chapter 6.7.2.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

awx+bwy+carccosn(λx)arccosm(βy)arccosk(γz)wz=0

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*D[w[x, y,z], y] +c*ArcCos[lambda*x]^n*ArcCos[beta*y]^m*ArcCos[gamma*z]^k*D[w[x,y,z],z]==0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)c1(ybxa,cos1(γz)k(2γcos1(γz)k1xccos1(λK[1])n((acos1(λK[1])nInverseFunction[Inactive[Integrate],1,2][1xccos1(λK[1])ncos1(β(y+b(K[1]x)a))madK[1],{K[1],1,x}]c)1m)madK[1]+(icos1(γz))kGamma(1k,icos1(γz))+(icos1(γz))kGamma(1k,icos1(γz)))2γ)}}

Maple

restart; 
pde :=  a*diff(w(x,y,z),x)+ b*diff(w(x,y,z),y)+c*arccos(lambda*x)^n*arccos(beta*y)^m*arccos(gamma1*z)^k*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(aybxa,(k2)cγ1(xarccos(_aλ)narccos((ay(_a+x)b)βa)md_a)+((k2)γ1zLommelS1(k+12,12,arccos(γ1z))arccos(γ1z)+(LommelS1(k+32,32,arccos(γ1z))arccos(γ1z)+arccos(γ1z)k+32+(k+2)LommelS1(k+12,12,arccos(γ1z)))γ12z2+1)a2k2karccos(γ1z)(k2)cγ1)

____________________________________________________________________________________

7.6.20.3 [1539] Problem 3

problem number 1539

Added May 31, 2019.

Problem Chapter 6.7.2.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

awx+barccosn(λx)wy+carccosk(βx)wz=0

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*ArcCos[lambda*x]^n*D[w[x, y,z], y] +c*ArcCos[beta*x]^k*D[w[x,y,z],z]==0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)c1((cos1(βx)2)k(c(icos1(βx))kcos1(βx)kGamma(k+1,icos1(βx))c(icos1(βx))kcos1(βx)kGamma(k+1,icos1(βx))+2aβz(cos1(βx)2)k)2aβ,y1xbcos1(λK[1])nadK[1])}}

Maple

restart; 
pde :=  a*diff(w(x,y,z),x)+ b*arccos(lambda*x)^n*diff(w(x,y,z),y)+c*arccos(beta*x)^k*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(y+π(λ2x2+12nLommelS1(n+32,32,arccos(λx))arccos(λx)π(n+2)+λ2x2+12narccos(λx)n+1π(n+2)3(2n3+43)(λxarccos(λx)λ2x2+1)2n1LommelS1(n+12,12,arccos(λx))π(n+2)arccos(λx))b2naλ,z+π(β2x2+12kLommelS1(k+32,32,arccos(βx))arccos(βx)π(k+2)+β2x2+12karccos(βx)k+1π(k+2)3(2k3+43)(βxarccos(βx)β2x2+1)2k1LommelS1(k+12,12,arccos(βx))π(k+2)arccos(βx))c2kaβ)

____________________________________________________________________________________

7.6.20.4 [1540] Problem 4

problem number 1540

Added May 31, 2019.

Problem Chapter 6.7.2.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

awx+barccosn(λx)wy+carccosk(βz)wz=0

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*ArcCos[lambda*x]^n*D[w[x, y,z], y] +c*ArcCos[beta*z]^k*D[w[x,y,z],z]==0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)c1(cxa+cos1(βz)k((icos1(βz))kGamma(1k,icos1(βz))+(icos1(βz))kGamma(1k,icos1(βz)))2β,y1xbcos1(λK[1])nadK[1])}}

Maple

restart; 
pde :=  a*diff(w(x,y,z),x)+ b*arccos(lambda*x)^n*diff(w(x,y,z),y)+c*arccos(beta*z)^k*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1((2(n+2)2n1LommelS1(n+12,12,arccos(λx))+(LommelS1(n+32,32,arccos(λx))arccos(λx)arccos(λx)n+1arccos(λx))2n)λ2x2+1b2narccos(λx)(n+2)(2bx2n2n1LommelS1(n+12,12,arccos(λx))arccos(λx)+ay)λ(n+2)aλ,(k2)βc(yarccos(λRootOf(_ZbλnLommelS1(n+12,12,arccos(_Zλ))arccos(_Zλ)+2_ZbλLommelS1(n+12,12,arccos(_Zλ))arccos(_Zλ)_baλnarccos(_Zλ)+aλnyarccos(_Zλ)aλn(barccos(λx)nadx)arccos(_Zλ)2_baλarccos(_Zλ)+2aλyarccos(_Zλ)2aλ(barccos(λx)nadx)arccos(_Zλ)_Z2λ2+1bnLommelS1(n+12,12,arccos(_Zλ))+_Z2λ2+1bLommelS1(n+32,32,arccos(_Zλ))arccos(_Zλ)_Z2λ2+1barccos(_Zλ)n+322_Z2λ2+1bLommelS1(n+12,12,arccos(_Zλ))))nd_b)+((k2)βzLommelS1(k+12,12,arccos(βz))arccos(βz)+(LommelS1(k+32,32,arccos(βz))arccos(βz)+arccos(βz)k+32+(k+2)LommelS1(k+12,12,arccos(βz)))β2z2+1)b2k2karccos(βz)(k2)βc)

____________________________________________________________________________________

7.6.20.5 [1541] Problem 5

problem number 1541

Added May 31, 2019.

Problem Chapter 6.7.2.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

awx+barccosn(λy)wy+carccosk(βz)wz=0

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*ArcCos[lambda*y]^n*D[w[x, y,z], y] +c*ArcCos[beta*z]^k*D[w[x,y,z],z]==0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)c1(cxa+cos1(βz)k((icos1(βz))kGamma(1k,icos1(βz))+(icos1(βz))kGamma(1k,icos1(βz)))2β,1ycos1(λK[1])ndK[1]bxa)}}

Maple

restart; 
pde :=  a*diff(w(x,y,z),x)+ b*arccos(lambda*y)^n*diff(w(x,y,z),y)+c*arccos(beta*z)^k*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(x+π(λ2y2+12nLommelS1(n+32,32,arccos(λy))arccos(λy)π(n2)λ2y2+12narccos(λy)n+1π(n2)+3(2n3+43)(λyarccos(λy)λ2y2+1)2n1LommelS1(n+12,12,arccos(λy))π(n2)arccos(λy))a2nbλ,π(λ2y2+12nLommelS1(n+32,32,arccos(λy))arccos(λy)π(n2)λ2y2+12narccos(λy)n+1π(n2)+3(2n3+43)(λyarccos(λy)λ2y2+1)2n1LommelS1(n+12,12,arccos(λy))π(n2)arccos(λy))2nλ+(2βkz2k1LommelS1(k+12,12,arccos(βz))arccos(βz)4βz2k1LommelS1(k+12,12,arccos(βz))arccos(βz)2β2z2+1k2k1LommelS1(k+12,12,arccos(βz))β2z2+12kLommelS1(k+32,32,arccos(βz))arccos(βz)+β2z2+12karccos(βz)k+1arccos(βz)+4β2z2+12k1LommelS1(k+12,12,arccos(βz)))b2k(k2)βcarccos(βz))

____________________________________________________________________________________