7.5.10 4.4

7.5.10.1 [1267] Problem 1
7.5.10.2 [1268] Problem 2
7.5.10.3 [1269] Problem 3
7.5.10.4 [1270] Problem 4
7.5.10.5 [1271] Problem 5

7.5.10.1 [1267] Problem 1

problem number 1267

Added April 3, 2019.

Problem Chapter 5.4.4.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) awx+bwy=cw+cothk(λx)cothn(βy)

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y], x] + b*D[w[x, y], y] == c*w[x,y]+Coth[lambda*x]^k*Coth[beta*y]^n; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)ecxa(1xecK[1]acothk(λK[1])cothn(β(y+b(K[1]x)a))adK[1]+c1(ybxa))}}

Maple

restart; 
pde :=  a*diff(w(x,y),x)+ b*diff(w(x,y),y) = c*w(x,y)+coth(lambda*x)^k*coth(beta*y)^n; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=(x(cothk(_aλ))(cothn((ay(_a+x)b)βa))e_acaad_a+_F1(aybxa))ecxa

____________________________________________________________________________________

7.5.10.2 [1268] Problem 2

problem number 1268

Added April 3, 2019.

Problem Chapter 5.4.4.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) awx+bwy=ccothk(λx)w+scothn(βx)

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y], x] + b*D[w[x, y], y] == c*Coth[lambda*x]^k*w[x,y]+ s*Coth[beta*x]^n; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)exp(ccothk+1(λx)2F1(1,k+12;k+32;coth2(λx))akλ+aλ)(1xexp(ccothk+1(λK[1])2F1(1,k+12;k+32;coth2(λK[1]))aλ+akλ)scothn(βK[1])adK[1]+c1(ybxa))}}

Maple

restart; 
pde :=  a*diff(w(x,y),x)+ b*diff(w(x,y),y) = c*coth(lambda*x)^k*w(x,y)+s*coth(beta*x)^n; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=(s(cothn(βx))ec((cothk(λx))dx)aadx+_F1(aybxa))ec(cothk(λx))adx

____________________________________________________________________________________

7.5.10.3 [1269] Problem 3

problem number 1269

Added April 3, 2019.

Problem Chapter 5.4.4.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) awx+bwy=(c1cothn1(λ1x)+c2cothn2(λ2y))w+s1cothk1(β1x)+s2cothk2(β2y)

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y], x] + b*D[w[x, y], y] == (c1*Coth[lambda1*x]^n1 + c2*Coth[lambda2*y]^n2)*w[x,y] + s1*Coth[beta1*x]^k1+ s2*Coth[beta2*y]^k2; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

$Aborted

Maple

restart; 
pde :=  a*diff(w(x,y),x)+ b*diff(w(x,y),y) = (c1*coth(lambda1*x)^n1 + c2*coth(lambda2*y)^n2)*w(x,y) + s1*coth(beta1*x)^k1+ s2*coth(beta2*y)^k2; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=(x(s1(cothk1(_bβ1))+s2(cothk2((ay(_b+x)b)β2a)))e(c1(cothn1(_bλ1))+c2(cothn2((ay(_b+x)b)λ2a)))d_baad_b+_F1(aybxa))exc1(cothn1(_aλ1))+c2(cothn2((ay(_a+x)b)λ2a))ad_a

____________________________________________________________________________________

7.5.10.4 [1270] Problem 4

problem number 1270

Added April 3, 2019.

Problem Chapter 5.4.4.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) acothn(λx)wx+bcothm(μx)wy=ccothk(νx)w+pcoths(βy)

Mathematica

ClearAll["Global`*"]; 
pde =  a*Coth[lambda*x]^n*D[w[x, y], x] + b*Coth[mu*x]^m*D[w[x, y], y] == c*Coth[nu*x]*w[x,y]+p*Coth[beta*y]^s; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)exp(1xccothn(λK[2])coth(νK[2])adK[2])(1xexp(1K[3]ccothn(λK[2])coth(νK[2])adK[2])pcothn(λK[3])coths(β(y1xbcothn(λK[1])cothm(μK[1])adK[1]+1K[3]bcothn(λK[1])cothm(μK[1])adK[1]))adK[3]+c1(y1xbcothn(λK[1])cothm(μK[1])adK[1]))}}

Maple

restart; 
pde :=  a*coth(lambda*x)^n*diff(w(x,y),x)+ b*coth(mu*x)^m*diff(w(x,y),y) = c*coth(nu*x)*w(x,y)+p*coth(beta*y)^s; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=(xp(cosh(_fλ)sinh(_fλ))n(cosh((ay+b((cosh(_fμ)sinh(_fμ))m(cosh(_fλ)sinh(_fλ))nd_f)b((cosh(λx)sinh(λx))n(cosh(μx)sinh(μx))mdx))βa)sinh((ay+b((cosh(_fμ)sinh(_fμ))m(cosh(_fλ)sinh(_fλ))nd_f)b((cosh(λx)sinh(λx))n(cosh(μx)sinh(μx))mdx))βa))sec((cosh(_fλ)sinh(_fλ))ncosh(_fν)sinh(_fν)d_f)aad_f+_F1(ayb((cosh(λx)sinh(λx))n(cosh(μx)sinh(μx))mdx)a))ec(cothn(λx))coth(νx)adx

____________________________________________________________________________________

7.5.10.5 [1271] Problem 5

problem number 1271

Added April 3, 2019.

Problem Chapter 5.4.4.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) acothn(λx)wx+bcothm(μx)wy=ccothk(νy)w+pcoths(βx)

Mathematica

ClearAll["Global`*"]; 
pde =  a*Coth[lambda*x]^n*D[w[x, y], x] + b*Coth[mu*x]^m*D[w[x, y], y] == c*Coth[nu*y]*w[x,y]+p*Coth[beta*x]^s; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)exp(1xccothn(λK[2])coth(ν(y1xbcothn(λK[1])cothm(μK[1])adK[1]+1K[2]bcothn(λK[1])cothm(μK[1])adK[1]))adK[2])(1xexp(1K[3]ccothn(λK[2])coth(ν(y1xbcothn(λK[1])cothm(μK[1])adK[1]+1K[2]bcothn(λK[1])cothm(μK[1])adK[1]))adK[2])pcoths(βK[3])cothn(λK[3])adK[3]+c1(y1xbcothn(λK[1])cothm(μK[1])adK[1]))}}

Maple

restart; 
pde :=  a*coth(lambda*x)^n*diff(w(x,y),x)+ b*coth(mu*x)^m*diff(w(x,y),y) = c*coth(nu*y)*w(x,y)+p*coth(beta*x)^s; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=(xp(cosh(_fβ)sinh(_fβ))s(cosh(_fλ)sinh(_fλ))nec((cosh(_fλ)sinh(_fλ))ncosh((ay+b((cosh(_fμ)sinh(_fμ))m(cosh(_fλ)sinh(_fλ))nd_f)b((cosh(λx)sinh(λx))n(cosh(μx)sinh(μx))mdx))νa)sinh((ay+b((cosh(_fμ)sinh(_fμ))m(cosh(_fλ)sinh(_fλ))nd_f)b((cosh(λx)sinh(λx))n(cosh(μx)sinh(μx))mdx))νa)d_f)aad_f+_F1(ayb((cosh(λx)sinh(λx))n(cosh(μx)sinh(μx))mdx)a))exc(cothn(_bλ))coth((b((cosh(λx)sinh(λx))n(cosh(μx)sinh(μx))mdx)+(y+b(cothn(_bλ))(cothm(_bμ))ad_b)a)νa)ad_b

____________________________________________________________________________________