Added April 3, 2019.
Problem Chapter 5.4.4.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*w[x,y]+Coth[lambda*x]^k*Coth[beta*y]^n; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := a*diff(w(x,y),x)+ b*diff(w(x,y),y) = c*w(x,y)+coth(lambda*x)^k*coth(beta*y)^n; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________
Added April 3, 2019.
Problem Chapter 5.4.4.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*Coth[lambda*x]^k*w[x,y]+ s*Coth[beta*x]^n; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := a*diff(w(x,y),x)+ b*diff(w(x,y),y) = c*coth(lambda*x)^k*w(x,y)+s*coth(beta*x)^n; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________
Added April 3, 2019.
Problem Chapter 5.4.4.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✗
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == (c1*Coth[lambda1*x]^n1 + c2*Coth[lambda2*y]^n2)*w[x,y] + s1*Coth[beta1*x]^k1+ s2*Coth[beta2*y]^k2; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
$Aborted
Maple ✓
restart; pde := a*diff(w(x,y),x)+ b*diff(w(x,y),y) = (c1*coth(lambda1*x)^n1 + c2*coth(lambda2*y)^n2)*w(x,y) + s1*coth(beta1*x)^k1+ s2*coth(beta2*y)^k2; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________
Added April 3, 2019.
Problem Chapter 5.4.4.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = a*Coth[lambda*x]^n*D[w[x, y], x] + b*Coth[mu*x]^m*D[w[x, y], y] == c*Coth[nu*x]*w[x,y]+p*Coth[beta*y]^s; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := a*coth(lambda*x)^n*diff(w(x,y),x)+ b*coth(mu*x)^m*diff(w(x,y),y) = c*coth(nu*x)*w(x,y)+p*coth(beta*y)^s; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________
Added April 3, 2019.
Problem Chapter 5.4.4.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = a*Coth[lambda*x]^n*D[w[x, y], x] + b*Coth[mu*x]^m*D[w[x, y], y] == c*Coth[nu*y]*w[x,y]+p*Coth[beta*x]^s; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := a*coth(lambda*x)^n*diff(w(x,y),x)+ b*coth(mu*x)^m*diff(w(x,y),y) = c*coth(nu*y)*w(x,y)+p*coth(beta*x)^s; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________