Added March 10, 2019.
Problem Chapter 5.2.2.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*w[x, y] + beta*x*y + gamma; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := a*diff(w(x,y),x)+ b*diff(w(x,y),y) = c*w(x,y)+beta*x*y+gamma; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 5.2.2.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*w[x, y] + x*(beta*x + gamma*y) + delta; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := a*diff(w(x,y),x)+ b*diff(w(x,y),y) = c*w(x,y)+x*(beta*x+gamma*y)+delta; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 5.2.2.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = x*D[w[x, y], x] + y*D[w[x, y], y] == w[x, y] + a*x^2 + b*y^2 + c; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := x*diff(w(x,y),x)+ y*diff(w(x,y),y) = w(x,y)+a*x^2+b*y^2+c; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 5.2.2.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = a*x*D[w[x, y], x] + b*y*D[w[x, y], y] == c*w[x, y] + x*(beta*x + gamma*y) + delta; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := a*x*diff(w(x,y),x)+ b*y*diff(w(x,y),y) = c*w(x,y)+x*(beta*x+gamma*y)+delta; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 5.2.2.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✗
ClearAll["Global`*"]; pde = a*y*D[w[x, y], x] + (b2*x^2 + b1*x + b0)*D[w[x, y], y] == (c2*x^2 + c1*x + c0)*w[x, y] + s2*x^2 + s1*x + s0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
$Aborted
Maple ✓
restart; pde := a*y*diff(w(x,y),x)+ (b2*x^2+b1*x+b0)*diff(w(x,y),y) = (c2*x^2+c1*x+c0)*w(x,y)+s2*x^2+s1*x+s0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 5.2.2.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✗
ClearAll["Global`*"]; pde = a*y^2*D[w[x, y], x] + (b1*x^2 + b0)*D[w[x, y], y] == (c1*x^2 + c0)*w[x, y] + s1*x^2 + s0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
$Aborted
Maple ✓
restart; pde := a*y*diff(w(x,y),x)+ (b1*x^2+b0)*diff(w(x,y),y) = (c1*x^2+c0)*w(x,y)+s1*x^2+s0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 5.2.2.7, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✗
ClearAll["Global`*"]; pde = (a1*x^2 + a0)*y^2*D[w[x, y], x] + (y + b2*x^2 + b1*x + b0)*D[w[x, y], y] == (c2*y + c1*x + c0)*w[x, y] + k22*y^2 + k12*x*y + k11*x^2 + k0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := (a1*x^2+a0)*diff(w(x,y),x)+ (y+b2*x^2+b1*x+b0)*diff(w(x,y),y) = (c2*y+c1*x+c0)*w(x,y)+ k22*y^2+k12*x*y+k11*x^2+k0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________
Added March 10, 2019.
Problem Chapter 5.2.2.8, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✗
ClearAll["Global`*"]; pde = (a1*x^2 + a0)*y^2*D[w[x, y], x] + (b2*y^2 + b1*x^2)*D[w[x, y], y] == (c2*y^2 + c1*x^2)*w[x, y] + s22*y^2 + s12*x*y + s11*x^2 + s0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := (a1*x^2+a0)*diff(w(x,y),x)+ (b2*y^2+b1*x^2)*diff(w(x,y),y) = (c2*y^2+c1*x^2)*w(x,y)+ s22*y^2+s12*x*y+s11*x^2+s0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________