7.5.2 2.2

7.5.2.1 [1206] Problem 1
7.5.2.2 [1207] Problem 2
7.5.2.3 [1208] Problem 3
7.5.2.4 [1209] Problem 4
7.5.2.5 [1210] Problem 5
7.5.2.6 [1211] Problem 6
7.5.2.7 [1212] Problem 7
7.5.2.8 [1213] Problem 8

7.5.2.1 [1206] Problem 1

problem number 1206

Added March 10, 2019.

Problem Chapter 5.2.2.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

awx+bwy=cw+βxy+γ

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y], x] + b*D[w[x, y], y] == c*w[x, y] + beta*x*y + gamma; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)aβ(2b+cy)+c(bβx+βcxy+cγ)c3+ecxac1(ybxa)}}

Maple

restart; 
pde :=  a*diff(w(x,y),x)+ b*diff(w(x,y),y) =  c*w(x,y)+beta*x*y+gamma; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=c3_F1(aybxa)ecxa2abβ(ay+bx)βc+(βxyγ)c2c3

____________________________________________________________________________________

7.5.2.2 [1207] Problem 2

problem number 1207

Added March 10, 2019.

Problem Chapter 5.2.2.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

awx+bwy=cw+x(βx+γy)+δ

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y], x] + b*D[w[x, y], y] == c*w[x, y] + x*(beta*x + gamma*y) + delta; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c3(ecxa)c1(ybxa)+2a2β+a(2bγ+2βcx+cγy)+c(bγx+c(βx2+δ+γxy))c3}}

Maple

restart; 
pde :=  a*diff(w(x,y),x)+ b*diff(w(x,y),y) =  c*w(x,y)+x*(beta*x+gamma*y)+delta; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=c3_F1(aybxa)ecxa2a2β2γab+(βx2γxyδ)c2+(2aβx+(aybx)γ)cc3

____________________________________________________________________________________

7.5.2.3 [1208] Problem 3

problem number 1208

Added March 10, 2019.

Problem Chapter 5.2.2.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

xwx+ywy=w+ax2+by2+c

Mathematica

ClearAll["Global`*"]; 
pde =  x*D[w[x, y], x] + y*D[w[x, y], y] == w[x, y] + a*x^2 + b*y^2 + c; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)xc1(yx)+ax2+by2c}}

Maple

restart; 
pde :=  x*diff(w(x,y),x)+ y*diff(w(x,y),y) =  w(x,y)+a*x^2+b*y^2+c; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=ax2+by2+x_F1(yx)c

____________________________________________________________________________________

7.5.2.4 [1209] Problem 4

problem number 1209

Added March 10, 2019.

Problem Chapter 5.2.2.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

axwx+bywy=cw+x(βx+γy)+δ

Mathematica

ClearAll["Global`*"]; 
pde =  a*x*D[w[x, y], x] + b*y*D[w[x, y], y] == c*w[x, y] + x*(beta*x + gamma*y) + delta; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c(2ac)(a+bc)xcac1(yxba)2a2δ2abδ+ac(x(βx+2γy)+3δ)+bc(βx2+δ)c2(x(βx+γy)+δ)c(c2a)(ab+c)}}

Maple

restart; 
pde :=  a*x*diff(w(x,y),x)+ b*y*diff(w(x,y),y) =  c*w(x,y)+x*(beta*x+gamma*y)+delta; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=βx22ac+γyxba+a+baa+bc+xca_F1(yxba)δc

____________________________________________________________________________________

7.5.2.5 [1210] Problem 5

problem number 1210

Added March 10, 2019.

Problem Chapter 5.2.2.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

aywx+(b2x2+b1x+b0)wy=(c2x2+c1x+c0)w+s2x2+s1x+s0

Mathematica

ClearAll["Global`*"]; 
pde =  a*y*D[w[x, y], x] + (b2*x^2 + b1*x + b0)*D[w[x, y], y] == (c2*x^2 + c1*x + c0)*w[x, y] + s2*x^2 + s1*x + s0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

$Aborted

Maple

restart; 
pde :=  a*y*diff(w(x,y),x)+ (b2*x^2+b1*x+b0)*diff(w(x,y),y) =  (c2*x^2+c1*x+c0)*w(x,y)+s2*x^2+s1*x+s0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

Expression too large to display

____________________________________________________________________________________

7.5.2.6 [1211] Problem 6

problem number 1211

Added March 10, 2019.

Problem Chapter 5.2.2.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

ay2wx+(b1x2+b0)wy=(c1x2+c0)w+s1x2+s0

Mathematica

ClearAll["Global`*"]; 
pde =  a*y^2*D[w[x, y], x] + (b1*x^2 + b0)*D[w[x, y], y] == (c1*x^2 + c0)*w[x, y] + s1*x^2 + s0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

$Aborted

Maple

restart; 
pde :=  a*y*diff(w(x,y),x)+ (b1*x^2+b0)*diff(w(x,y),y) =  (c1*x^2+c0)*w(x,y)+s1*x^2+s0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

Expression too large to display

____________________________________________________________________________________

7.5.2.7 [1212] Problem 7

problem number 1212

Added March 10, 2019.

Problem Chapter 5.2.2.7, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

(a1x2+a0)wx+(y+b2x2+b1x+b0)wy=(c2y+c1x+c0)w+k22y2+k12xy+k11x2+k0

Mathematica

ClearAll["Global`*"]; 
pde = (a1*x^2 + a0)*y^2*D[w[x, y], x] + (y + b2*x^2 + b1*x + b0)*D[w[x, y], y] == (c2*y + c1*x + c0)*w[x, y] + k22*y^2 + k12*x*y + k11*x^2 + k0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  (a1*x^2+a0)*diff(w(x,y),x)+ (y+b2*x^2+b1*x+b0)*diff(w(x,y),y) =  (c2*y+c1*x+c0)*w(x,y)+ k22*y^2+k12*x*y+k11*x^2+k0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=(x(yearctan(a1xa0a1)a0a1+(_f2b2+_fb1+b0)earctan(_fa1a0a1)a0a1_f2a1+a0d_f((b2x2+b1x+b0)earctan(a1xa0a1)a0a1a1x2+a0dx))_fk12ea0a1(c2yearctan(_fa1a0a1)a0a1earctan(a1xa0a1)a0a1+c2((_f2b2+_fb1+b0)earctan(_fa1a0a1)a0a1_f2a1+a0d_f)earctan(_fa1a0a1)a0a1c2((b2x2+b1x+b0)earctan(a1xa0a1)a0a1a1x2+a0dx)earctan(_fa1a0a1)a0a1+_fc1+c0_f2a1+a0d_f)arctan(_fa1a0a1)a0a1+(yearctan(a1xa0a1)a0a1+(_f2b2+_fb1+b0)earctan(_fa1a0a1)a0a1_f2a1+a0d_f((b2x2+b1x+b0)earctan(a1xa0a1)a0a1a1x2+a0dx))2k22ea0a1(c2yearctan(_fa1a0a1)a0a1earctan(a1xa0a1)a0a1+c2((_f2b2+_fb1+b0)earctan(_fa1a0a1)a0a1_f2a1+a0d_f)earctan(_fa1a0a1)a0a1c2((b2x2+b1x+b0)earctan(a1xa0a1)a0a1a1x2+a0dx)earctan(_fa1a0a1)a0a1+_fc1+c0_f2a1+a0d_f)2arctan(_fa1a0a1)a0a1+(k11_f2+k0)e(c2yearctan(_fa1a0a1)a0a1earctan(a1xa0a1)a0a1+c2((_f2b2+_fb1+b0)earctan(_fa1a0a1)a0a1_f2a1+a0d_f)earctan(_fa1a0a1)a0a1c2((b2x2+b1x+b0)earctan(a1xa0a1)a0a1a1x2+a0dx)earctan(_fa1a0a1)a0a1+_fc1+c0_f2a1+a0d_f)_f2a1+a0d_f+_F1(yearctan(a1xa0a1)a0a1((b2x2+b1x+b0)earctan(a1xa0a1)a0a1a1x2+a0dx)))exc2yearctan(_ba1a0a1)a0a1earctan(a1xa0a1)a0a1+c2((_b2b2+_bb1+b0)earctan(_ba1a0a1)a0a1_b2a1+a0d_b)earctan(_ba1a0a1)a0a1c2((b2x2+b1x+b0)earctan(a1xa0a1)a0a1a1x2+a0dx)earctan(_ba1a0a1)a0a1+_bc1+c0_b2a1+a0d_b

____________________________________________________________________________________

7.5.2.8 [1213] Problem 8

problem number 1213

Added March 10, 2019.

Problem Chapter 5.2.2.8, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

(a1x2+a0)wx+(b2y2+b1xy)wy=(c2y2+c1x2)w+s22y2+s12xy+s11x2+s0

Mathematica

ClearAll["Global`*"]; 
pde = (a1*x^2 + a0)*y^2*D[w[x, y], x] + (b2*y^2 + b1*x^2)*D[w[x, y], y] == (c2*y^2 + c1*x^2)*w[x, y] + s22*y^2 + s12*x*y + s11*x^2 + s0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  (a1*x^2+a0)*diff(w(x,y),x)+ (b2*y^2+b1*x^2)*diff(w(x,y),y) =  (c2*y^2+c1*x^2)*w(x,y)+ s22*y^2+s12*x*y+s11*x^2+s0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

Expression too large to display

____________________________________________________________________________________