7.4.14 5.2

7.4.14.1 [1110] Problem 1
7.4.14.2 [1111] Problem 2
7.4.14.3 [1112] Problem 3
7.4.14.4 [1113] Problem 4
7.4.14.5 [1114] Problem 5
7.4.14.6 [1115] Problem 6

7.4.14.1 [1110] Problem 1

problem number 1110

Added Feb. 25, 2019.

Problem Chapter 4.5.2.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

awx+bwy=(cxn+slnk(λy))w

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y], x] + b*D[w[x, y], y] == (c*x^n + s*Log[gamma*y]^k)*w[x, y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c1(ybxa)exp(slogk(γy)(log(γy))kGamma(k+1,log(γy))bγ+cxn+1an+a)}}

Maple

restart; 
pde := a*diff(w(x,y),x)+b*diff(w(x,y),y) = (c*x^n+s*ln(gamma*y)^k)*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1(aybxa)exc_an+s(ln(ay(_a+x)ba)+ln(γ))kad_a

____________________________________________________________________________________

7.4.14.2 [1111] Problem 2

problem number 1111

Added Feb. 25, 2019.

Problem Chapter 4.5.2.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

wx+awy=(by2+cxny+slnk(λx))w

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + a*D[w[x, y], y] == (b*y^2 + c*x^n*y + s*Log[lambda*x]^k)*w[x, y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c1(yax)exp(slogk(λx)(log(λx))kGamma(k+1,log(λx))λ+13a2bx3+abx2(yax)+bx(yax)2+cxn+1((n+2)yax)(n+1)(n+2))}}

Maple

restart; 
pde :=  diff(w(x,y),x)+a*diff(w(x,y),y) = (b*y^2+c*x^n*y+ s*ln(lambda*x)^k)*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1(ax+y)ex(ac_an+1(axy)c_an+sln(_aλ)k+((_a+x)ay)2b)d_a

____________________________________________________________________________________

7.4.14.3 [1112] Problem 3

problem number 1112

Added March 9, 2019.

Problem Chapter 4.5.2.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

wx+awy=blnk(λx)lnn(βy)w

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + a*D[w[x, y], y] == b*Log[lambda*x]^k*Log[beta*y]^n*w[x, y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c1(yax)exp(1xblogk(λK[1])logn(β(y+a(K[1]x)))dK[1])}}

Maple

restart; 
pde :=  diff(w(x,y),x)+a*diff(w(x,y),y) = b*ln(lambda*x)^k*ln(beta*y)^n*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1(ax+y)exbln(_aλ)kln(((_a+x)ay)β)nd_a

____________________________________________________________________________________

7.4.14.4 [1113] Problem 4

problem number 1113

Added March 9, 2019.

Problem Chapter 4.5.2.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

wx+(ay+bxn)wy=clnk(λx)w

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (a*y + b*x^n)*D[w[x, y], y] == c*Log[lambda*x]^k*w[x, y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c1(ban1Gamma(n+1,ax)+yeax)exp(1xclogk(λK[1])dK[1])}}

Maple

restart; 
pde :=  diff(w(x,y),x)+(a*y+b*x^n)*diff(w(x,y),y) = c*ln(lambda*x)^k*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1((bxn(ax)n2WhittakerM(n2,n2+12,ax)eax2+(n+1)ay)eax(n+1)a)ecln(λx)kdx

____________________________________________________________________________________

7.4.14.5 [1114] Problem 5

problem number 1114

Added March 9, 2019.

Problem Chapter 4.5.2.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

axwx+bywy=xk(nlnx+mlny)w

Mathematica

ClearAll["Global`*"]; 
pde =  a*x*D[w[x, y], x] + b*y*D[w[x, y], y] == x^k*(n*Log[x] + m*Log[y])*w[x, y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c1(yxba)exp(xk(akmlog(y)+aknlog(x)anbm)a2k2)}}

Maple

restart; 
pde :=  a*x*diff(w(x,y),x)+ b*y*diff(w(x,y),y) = x^k*(n*ln(x)+m*ln(y))*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=xnxkak(xba)mxkak(yxba)mxkak_F1(yxba)e(iπakmcsgn(iy)3iπakmcsgn(iy)2csgn(ixba)i(csgn(iy)csgn(ixba))πakmcsgn(iy)csgn(iyxba)+2an+2bm)xk2a2k2

____________________________________________________________________________________

7.4.14.6 [1115] Problem 6

problem number 1115

Added March 9, 2019.

Problem Chapter 4.5.2.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

axkwx+bynwy=(clnm(λx)+slnt(βy))w

Mathematica

ClearAll["Global`*"]; 
pde = a*x^k*D[w[x, y], x] + b*y^n*D[w[x, y], y] == (c*Log[lambda*x]^m + s*Log[beta*y]^t)*w[x, y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c1(bx1ka(k1)y1nn1)exp(1xK[1]k(clogm(λK[1])+slogt(β(a(k1)xkynK[1]ka(k1)xkyK[1]kb(n1)yn(xK[1]kxkK[1]))1n1))adK[1])}}

Maple

restart; 
pde :=  a*x^k*diff(w(x,y),x)+ b*y^n*diff(w(x,y),y) = (c*ln(lambda*x)^m+s*ln(beta*y)^t)*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1((k1)ayn+1(n1)bxk+1(k1)a)ex(cln(_aλ)m+sln(β((k1)ayn+1+(n1)b_ak+1(n1)bxk+1(k1)a)1n1)t)_akad_a

____________________________________________________________________________________