7.3.14 5.2

7.3.14.1 [932] Problem 1
7.3.14.2 [933] Problem 2
7.3.14.3 [934] Problem 3

7.3.14.1 [932] Problem 1

problem number 932

Added Feb. 11, 2019.

Problem Chapter 3.5.2.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

awx+bwy=cxn+slnk(λy)

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y], x] + b*D[w[x, y], y] == c*x^n + s*Log[lambda*y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c1(ybxa)x(cxn+ns+s)a(n+1)+sylog(λy)b}}

Maple

restart; 
pde :=a*diff(w(x,y),x) + b*diff(w(x,y),y) =  c*x^n+s*ln(lambda*y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 

w(x,y)=bcxn+1+(n+1)(b_F1(aybxa)+(ln(λy)1)sy)a(n+1)ab

____________________________________________________________________________________

7.3.14.2 [933] Problem 2

problem number 933

Added Feb. 11, 2019.

Problem Chapter 3.5.2.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

wx+awy=by2+cxny+slnk(λx)

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + a*D[w[x, y], y] == b*y^2 + c*x^n*y + s*Log[lambda*x]^k; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)(log(λx))k(3(n2+3n+2)slogk(λx)Gamma(k+1,log(λx))+3λ(n2+3n+2)(log(λx))kc1(yax)+λx(log(λx))k(a2b(n2+3n+2)x23ax(b(n2+3n+2)y+cxn)+3(n+2)y(b(n+1)y+cxn)))3λ(n+1)(n+2)}}

Maple

restart; 
pde := diff(w(x,y),x) + a*diff(w(x,y),y) =  b*y^2+c*x^n*y+s*ln(lambda*x)^k; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 

w(x,y)=x(ac_an+1(axy)c_an+sln(_aλ)k+((_a+x)ay)2b)d_a+_F1(ax+y) Result has unresolved integrals

____________________________________________________________________________________

7.3.14.3 [934] Problem 3

problem number 934

Added Feb. 11, 2019.

Problem Chapter 3.5.2.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

wx+awy=blnk(λx)lnn(βy)

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + a*D[w[x, y], y] == b*Log[lambda*x]^k*Log[beta*y]^n; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)1xblogk(λK[1])logn(β(y+a(K[1]x)))dK[1]+c1(yax)}}

Maple

restart; 
pde := diff(w(x,y),x) + a*diff(w(x,y),y) =  b*ln(lambda*x)^k*ln(beta*y)^n; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 

w(x,y)=xbln(_aλ)kln(((_a+x)ay)β)nd_a+_F1(ax+y)

____________________________________________________________________________________