Added Feb. 7, 2019.
Problem 2.8.6.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (f[x]*y^2 - f[x]*g[x]*y + Derivative[1][g][x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y),x)+( f(x)*y^2 -f(x)*g(x)*y+ diff(g(x),x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
sol=()
____________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.8.6.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] - (Derivative[1][f][x]*y^2 - f[x]*g[x]*y + g[x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)-( diff(f(x),x)*y^2 -f(x)*g(x)*y+ g(x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
____________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.8.6.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (g[x]*(y - f[x])^2 + Derivative[1][f][x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x)+(g(x)*(y-f(x))^2 + diff(f(x),x) )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
____________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.8.6.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + ((Derivative[1][f][x]*y^2)/g[x] - Derivative[1][g][x]/f[x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+(diff(f(x),x)/g(x)* y^2 - diff(g(x),x)/f(x) )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
____________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.8.6.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✗
ClearAll["Global`*"]; pde = f[x]^2*D[w[x, y], x] + (Derivative[1][f][x]*y^2 - g[x]*(y - f[x]))*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := f(x)^2*diff(w(x,y),x)+(diff(f(x),x)*y^2 -g(x)*(y-f(x)) )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
sol=()
____________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.8.6.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (y^2 - Derivative[2][f][x]/f[x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+(y^2 - diff(f(x),x,x)/f(x) )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
____________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.8.6.7 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✗
ClearAll["Global`*"]; pde = g[x]*D[w[x, y], x] + (a*f[x]*g[x]*y^3 + (b*f[x]*g[x]^3 + Derivative[1][g][x])*y + c*f[x]*g[x]^4)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := g(x)*diff(w(x,y),x)+(a*f(x)*g(x)*y^3 + (b*f(x)*g(x)^3 + diff(g(x),x))*y+ c*f(x)*g(x)^4)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
____________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.8.6.8 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (f[x]*y^3 + 3*f[x]*h[x]*y^2 + (g[x] + 3*f[x]*h[x]^2)*y + f[x]*h[x]^3 + g[x]*h[x] - Derivative[1][h][x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x)+(f(x)*y^3+3*f(x)*h(x)*y^2+(g(x)+3*f(x)*h(x)^2)*y+ f(x)*h(x)^3 + g(x)* h(x) - diff(h(x),x) )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
____________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.8.6.9 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + ((Derivative[1][g][x]*y^3)/(f[x]^2*(a*g[x] + b)^3) + (Derivative[1][f][x]*y)/f[x] + f[x]*Derivative[1][g][x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+(diff(g(x),x)/(f(x)^2 *(a*g(x)+b)^3)*y^3 + diff(f(x),x)/f(x) * y + f(x)*diff(g(x),x) )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
____________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.8.6.10 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + ((y - f[x])*(y - g[x])*(y - (a*f[x] + b*g[x])/(a + b))*h[x] + ((y - g[x])*Derivative[1][f][x])/(f[x] - g[x]) + ((y - f[x])*Derivative[1][g][x])/(g[x] - f[x]))*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+((y-f(x))*(y-g(x))*(y- (a*f(x)+b*g(x))/(a+b))*h(x)+(y-g(x))/(f(x)-g(x))*diff(f(x),x)+ (y-f(x))/(g(x)-f(x))*diff(g(x),x) )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
____________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.8.6.11 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (f[x]*y^2 + Derivative[1][g][x]*y + a*f[x]*Exp[2*g[x]])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}, Assumptions -> a > 0], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x)+(f(x)*y^2 + diff(g(x),x)*y+ a*f(x)*exp(2*g(x)) )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) assuming a>0 ),output='realtime'));
____________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.8.6.12 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (Derivative[1][f][x]*y^2 + a*Exp[lambda*x]*f[x]*y + a*Exp[lambda*x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+(diff(f(x),x)*y^2+ a*exp(lambda*x)* f(x)*y+a*exp(lambda*x) )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
____________________________________________________________________________________