7.2.29 8.6

7.2.29.1 [789] problem number 1
7.2.29.2 [790] problem number 2
7.2.29.3 [791] problem number 3
7.2.29.4 [792] problem number 4
7.2.29.5 [793] problem number 5
7.2.29.6 [794] problem number 6
7.2.29.7 [795] problem number 7
7.2.29.8 [796] problem number 8
7.2.29.9 [797] problem number 9
7.2.29.10 [798] problem number 10
7.2.29.11 [799] problem number 11
7.2.29.12 [800] problem number 12

7.2.29.1 [789] problem number 1

problem number 789

Added Feb. 7, 2019.

Problem 2.8.6.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

wx+(f(x)y2f(x)g(x)y+g(x))wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (f[x]*y^2 - f[x]*g[x]*y + Derivative[1][g][x])*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde := diff(w(x,y),x)+( f(x)*y^2 -f(x)*g(x)*y+ diff(g(x),x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 

sol=()

____________________________________________________________________________________

7.2.29.2 [790] problem number 2

problem number 790

Added Feb. 7, 2019.

Problem 2.8.6.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

wx(f(x)y2f(x)g(x)y+g(x))wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] - (Derivative[1][f][x]*y^2 - f[x]*g[x]*y + g[x])*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde := diff(w(x,y),x)-( diff(f(x),x)*y^2 -f(x)*g(x)*y+ g(x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 

w(x,y)=_F1(y((ddxf(x))ef(x)g(x)dxf(x)2dx)f(x)e(f(x)2g(x)+2ddxf(x)f(x)dx)f(x)((ddxf(x))ef(x)g(x)dxf(x)2dx)yf(x)1)

____________________________________________________________________________________

7.2.29.3 [791] problem number 3

problem number 791

Added Feb. 7, 2019.

Problem 2.8.6.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

wx+(g(x)(yf(x))2+f(x))wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (g[x]*(y - f[x])^2 + Derivative[1][f][x])*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c1(1xg(K[2])dK[2]+1yf(x))}}

Maple

restart; 
pde := diff(w(x,y),x)+(g(x)*(y-f(x))^2 + diff(f(x),x) )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 

w(x,y)=_F1((yf(x))(g(x)dx)+1yf(x))

____________________________________________________________________________________

7.2.29.4 [792] problem number 4

problem number 792

Added Feb. 7, 2019.

Problem 2.8.6.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

wx+(f(x)g(x)y2g(x)f(x))wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + ((Derivative[1][f][x]*y^2)/g[x] - Derivative[1][g][x]/f[x])*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde := diff(w(x,y),x)+(diff(f(x),x)/g(x)* y^2 - diff(g(x),x)/f(x)  )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 

w(x,y)=_F1((yf(x)2f(x)g(x))(ddxf(x)f(x)2g(x)dx)1(yf(x)+g(x))f(x))

____________________________________________________________________________________

7.2.29.5 [793] problem number 5

problem number 793

Added Feb. 7, 2019.

Problem 2.8.6.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

f2(x)wx+(f(x)y2g(x)(yf(x)))wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  f[x]^2*D[w[x, y], x] + (Derivative[1][f][x]*y^2 - g[x]*(y - f[x]))*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde := f(x)^2*diff(w(x,y),x)+(diff(f(x),x)*y^2 -g(x)*(y-f(x))  )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 

sol=()

____________________________________________________________________________________

7.2.29.6 [794] problem number 6

problem number 794

Added Feb. 7, 2019.

Problem 2.8.6.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

wx+(y2f(x)f(x))wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (y^2 - Derivative[2][f][x]/f[x])*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)+(y^2 - diff(f(x),x,x)/f(x) )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 

w(x,y)=_F1((yf(x)2(ddxf(x))f(x))(1f(x)2dx)1(yf(x)+ddxf(x))f(x))

____________________________________________________________________________________

7.2.29.7 [795] problem number 7

problem number 795

Added Feb. 7, 2019.

Problem 2.8.6.7 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

g(x)wx+(af(x)g(x)y3+(bf(x)g3(x)+g(x))y+cf(x)g4(x))wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  g[x]*D[w[x, y], x] + (a*f[x]*g[x]*y^3 + (b*f[x]*g[x]^3 + Derivative[1][g][x])*y + c*f[x]*g[x]^4)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  g(x)*diff(w(x,y),x)+(a*f(x)*g(x)*y^3 + (b*f(x)*g(x)^3 + diff(g(x),x))*y+ c*f(x)*g(x)^4)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 

w(x,y)=_F1(b3ln(RootOf(ac2_Z3+b3_Zb3)cg(x)bycg(x))3RootOf(ac2_Z3+b3_Zb3)2ac2+b3b(f(x)g(x)2dx))

____________________________________________________________________________________

7.2.29.8 [796] problem number 8

problem number 796

Added Feb. 7, 2019.

Problem 2.8.6.8 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

wx+(f(x)y3+3f(x)h(x)y2+(g(x)+3f(x)h2(x))y+f(x)h3(x)+g(x)h(x)h(x))wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (f[x]*y^3 + 3*f[x]*h[x]*y^2 + (g[x] + 3*f[x]*h[x]^2)*y + f[x]*h[x]^3 + g[x]*h[x] - Derivative[1][h][x])*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c1(2(h(x)+y)21xexp(21K[2]g(K[1])dK[1])f(K[2])dK[2]+exp(21xg(K[1])dK[1])(h(x)+y)2)}}

Maple

restart; 
pde := diff(w(x,y),x)+(f(x)*y^3+3*f(x)*h(x)*y^2+(g(x)+3*f(x)*h(x)^2)*y+ f(x)*h(x)^3 + g(x)* h(x) - diff(h(x),x) )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 

w(x,y)=_F1(2(y+h(x))2(e2(g(x)dx)f(x)dx)+e2(g(x)dx)(y+h(x))2)

____________________________________________________________________________________

7.2.29.9 [797] problem number 9

problem number 797

Added Feb. 7, 2019.

Problem 2.8.6.9 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

wx+(g(x)f2(x)(ag(x)+b)3y3+f(x)f(x)y+f(x)g(x))wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + ((Derivative[1][g][x]*y^3)/(f[x]^2*(a*g[x] + b)^3) + (Derivative[1][f][x]*y)/f[x] + f[x]*Derivative[1][g][x])*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde := diff(w(x,y),x)+(diff(g(x),x)/(f(x)^2 *(a*g(x)+b)^3)*y^3 + diff(f(x),x)/f(x) * y + f(x)*diff(g(x),x) )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 

w(x,y)=_F1(a3ln((ag(x)+b)RootOf(a3_Z+_Z3+a3)f(x)+ay(ag(x)+b)f(x))a33RootOf(a3_Z+_Z3+a3)2ln(ag(x)+b))

____________________________________________________________________________________

7.2.29.10 [798] problem number 10

problem number 798

Added Feb. 7, 2019.

Problem 2.8.6.10 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

wx+((yf(x))(yg(x))(yaf(x)+bg(x)a+b)h(x)+yg(x)f(x)g(x)f(x)+yf(x)g(x)f(x)g(x))wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + ((y - f[x])*(y - g[x])*(y - (a*f[x] + b*g[x])/(a + b))*h[x] + ((y - g[x])*Derivative[1][f][x])/(f[x] - g[x]) + ((y - f[x])*Derivative[1][g][x])/(g[x] - f[x]))*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde := diff(w(x,y),x)+((y-f(x))*(y-g(x))*(y- (a*f(x)+b*g(x))/(a+b))*h(x)+(y-g(x))/(f(x)-g(x))*diff(f(x),x)+ (y-f(x))/(g(x)-f(x))*diff(g(x),x) )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 

w(x,y)=_F1(((a+b)bln(9(a+b)(a2+ab+b2)(yg(x))(f(x)g(x))(2a+b))+(2((f(x)2h(x)dx)2(g(x)2h(x)dx)2+f(x)g(x)h(x)dx)b+(a+b)ln(9(a+b)(a2+ab+b2)(yf(x))(f(x)g(x))(a+2b)))a(a+b)2ln(9(a2+ab+b2)(af(x)bg(x)+(a+b)y)(f(x)g(x))(ab)))(a2+ab+b2)3(a+b)2ab)

____________________________________________________________________________________

7.2.29.11 [799] problem number 11

problem number 799

Added Feb. 7, 2019.

Problem 2.8.6.11 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

wx+(f(x)y2+g(x)y+af(x)e2g(x))wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (f[x]*y^2 + Derivative[1][g][x]*y + a*f[x]*Exp[2*g[x]])*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}, Assumptions -> a > 0], 60*10]];
 

{{w(x,y)c1(tan1(yeg(x)a)a1xeg(K[1])f(K[1])dK[1])}}

Maple

restart; 
pde := diff(w(x,y),x)+(f(x)*y^2 + diff(g(x),x)*y+ a*f(x)*exp(2*g(x)) )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) assuming a>0 ),output='realtime'));
 

w(x,y)=_F1(a(eg(x)f(x)dx)arctan(yeg(x)a))

____________________________________________________________________________________

7.2.29.12 [800] problem number 12

problem number 800

Added Feb. 7, 2019.

Problem 2.8.6.12 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

wx+(f(x)y2+aeλxf(x)y+aeλx)wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (Derivative[1][f][x]*y^2 + a*Exp[lambda*x]*f[x]*y + a*Exp[lambda*x])*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde := diff(w(x,y),x)+(diff(f(x),x)*y^2+ a*exp(lambda*x)* f(x)*y+a*exp(lambda*x) )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))  ),output='realtime'));
 

w(x,y)=_F1(y((ddxf(x))ea(eλxf(x)dx)f(x)2dx)f(x)e(aeλxf(x)2+2ddxf(x)f(x)dx)f(x)((ddxf(x))ea(eλxf(x)dx)f(x)2dx)yf(x)+1)

____________________________________________________________________________________