7.2.26 8.3

7.2.26.1 [777] problem number 1
7.2.26.2 [778] problem number 2
7.2.26.3 [779] problem number 3

7.2.26.1 [777] problem number 1

problem number 777

Added Feb. 7, 2019.

Problem 2.8.3.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\) \[ w_x + \left (f(x) y^2 - a^2 f(x) + a \lambda \sinh (\lambda x) - a^2 f(x) \sinh ^2(\lambda x) \right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (f[x]*y^2 - a^2*f[x] + a*lambda*Sinh[lambda*x] - a^2*f[x]*Sinh[lambda*x]^2)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde := diff(w(x,y),x)+(   f(x)*y^2 - a^2*f(x) + a*lambda*sinh(lambda*x) - a^2*f(x)*sinh(lambda*x)^2)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 

sol=()

____________________________________________________________________________________

7.2.26.2 [778] problem number 2

problem number 778

Added Feb. 7, 2019.

Problem 2.8.3.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\) \[ w_x + \left (f(x) y^2 - a(a f(x)+\lambda ) \tanh ^2(\lambda x) +a \lambda \right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (f[x]*y^2 - a*(a*f[x] + lambda)*Tanh[lambda*x]^2 + a*lambda)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde := diff(w(x,y),x)+(   f(x)*y^2 - a*(a*f(x)+lambda)*tanh(lambda*x)^2 +a*lambda)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 

sol=()

____________________________________________________________________________________

7.2.26.3 [779] problem number 3

problem number 779

Added Feb. 7, 2019.

Problem 2.8.3.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\) \[ w_x + \left (f(x) y^2 - a(a f(x)+\lambda ) \coth ^2(\lambda x) +a \lambda \right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (f[x]*y^2 - a*(a*f[x] + lambda)*Coth[lambda*x]^2 + a*lambda)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde := diff(w(x,y),x)+(   f(x)*y^2 - a*(a*f(x)+lambda)*coth(lambda*x)^2 +a*lambda)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 

sol=()

____________________________________________________________________________________