7.2.17 6.3

7.2.17.1 [667] problem number 1
7.2.17.2 [668] problem number 2
7.2.17.3 [669] problem number 3
7.2.17.4 [670] problem number 4
7.2.17.5 [671] problem number 5
7.2.17.6 [672] problem number 6
7.2.17.7 [673] problem number 7
7.2.17.8 [674] problem number 8
7.2.17.9 [675] problem number 9
7.2.17.10 [676] problem number 10
7.2.17.11 [677] problem number 11
7.2.17.12 [678] problem number 12
7.2.17.13 [679] problem number 13
7.2.17.14 [680] problem number 14
7.2.17.15 [681] problem number 15

7.2.17.1 [667] problem number 1

problem number 667

Added January 14, 2019.

Problem 2.6.3.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) wx+(atank(λx)+b)wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (a + Tan[lambda*x] + b)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c1(axbx+log(cos(λx))λ+y)}}

Maple

restart; 
pde :=  diff(w(x,y),x)+(a+tan(lambda*x)+b)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1(((2a2b)x+2y)λln(tan2(λx)+1)2λ)

____________________________________________________________________________________

7.2.17.2 [668] problem number 2

problem number 668

Added January 14, 2019.

Problem 2.6.3.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) wx+(atank(λy)+b)wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (a + Tan[lambda*y] + b)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c1(x+i(a+bi)log(tan(λy)+i)+i(a+b+i)log(tan(λy)+i)+2log(a+b+tan(λy))2λ(a+bi)(a+b+i))}}

Maple

restart; 
pde :=  diff(w(x,y),x)+(a+tan(lambda*y)+b)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1((2a2x+4abx+2b2x+2x)λ+(2a2b)arctan(tan(λy))+ln(tan2(λy)+1)2ln(a+b+tan(λy))2(a2+2ab+b2+1)λ)

____________________________________________________________________________________

7.2.17.3 [669] problem number 3

problem number 669

Added January 14, 2019.

Problem 2.6.3.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) wx+atank(λx)tann(μy)wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + a*Tan[lambda*x]^k*Tan[mu*y]^n*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c1(tan1n(μy)2F1(1,12n2;32n2;tan2(μy))μμnatank+1(λx)2F1(1,k+12;k+32;tan2(λx))kλ+λ)}}

Maple

restart; 
pde :=  diff(w(x,y),x)+a *tan(lambda*x)^k * tan(mu*y)^n*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1(((tank(λx))dx)+tann(μy)ady) Has unresolved integrals

____________________________________________________________________________________

7.2.17.4 [670] problem number 4

problem number 670

Added January 14, 2019.

Problem 2.6.3.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) wx+(y2+aλ+a(λa)tan2(λx))wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (y^2 + a*lambda + a*(lambda - a)*Tan[lambda*x]^2)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)+( y^2+ a *lambda + a*(lambda -a) *tan(lambda*x)^2)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1(2(cos(2λx)+1)λLegendreP(2a+λ2λ,2aλ2λ,sin(λx))+(4y(cos3(λx))asin(λx)asin(3λx))LegendreP(2aλ2λ,2aλ2λ,sin(λx))2(cos(2λx)+1)λLegendreQ(2a+λ2λ,2aλ2λ,sin(λx))+(4y(cos3(λx))+asin(λx)+asin(3λx))LegendreQ(2aλ2λ,2aλ2λ,sin(λx)))

____________________________________________________________________________________

7.2.17.5 [671] problem number 5

problem number 671

Added January 14, 2019.

Problem 2.6.3.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) wx+(y2+λ2+3aλ+a(λa)tan2(λx))wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (y^2 + lambda^2 + 3*a*lambda + a*(lambda - a)*Tan[lambda*x]^2)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)+(  y^2+ lambda^2 +3*a*lambda +a*(lambda-a)*tan(lambda*x)^2)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1(4λLegendreP(2a+3λ2λ,2aλ2λ,sin(λx))(cos2(λx))2(λ(sin3(λx))2+(a+3λ2)(cos2(λx))sin(λx)λsin(λx)2+(y(sin2(λx))+y)cos(λx))LegendreP(2a+λ2λ,2aλ2λ,sin(λx))4λLegendreQ(2a+3λ2λ,2aλ2λ,sin(λx))(cos2(λx))+2(λ(sin3(λx))2+(a+3λ2)(cos2(λx))sin(λx)λsin(λx)2+(y(sin2(λx))+y)cos(λx))LegendreQ(2a+λ2λ,2aλ2λ,sin(λx)))

____________________________________________________________________________________

7.2.17.6 [672] problem number 6

problem number 672

Added January 14, 2019.

Problem 2.6.3.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) wx+(y2+axtank(bx)y+atank(bx))wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (y^2 + a*x*Tan[b*x]^k*y + a*Tan[b*x]^k)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c1(exp(1xaK[5]tank(bK[5])dK[5])x2y+x1xexp(1K[6]aK[5]tank(bK[5])dK[5])K[6]2dK[6])}}

Maple

restart; 
pde :=  diff(w(x,y),x)+(  y^2+ a*x  *tan(b*x)^k * y + a*tan(b*x)^k)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1(xy(eax2(tank(bx))2xdxdx)+xeax2(tank(bx))2xdx+eax2(tank(bx))2xdxdxxy+1)

____________________________________________________________________________________

7.2.17.7 [673] problem number 7

problem number 673

Added January 14, 2019.

Problem 2.6.3.7 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) wx((k+1)xky2axk+1(tanx)my+a(tanx)m)wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] - ((k + 1)*x^k*y^2 - a*x^(k + 1)*Tan[x]^m*y + a*Tan[x]^m)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)-(  (k+1)*x^k*y^2- a*x^(k+1)*tan(x)^m*y + a*tan(x)^m )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1(xk+1eaxxk+1(tanm(x))2k2xdx+(yxk+11)(k+1)(xkea(xk+1(i(e2ix1)e2ix+1)mdx)x2dx)yxk+11)

____________________________________________________________________________________

7.2.17.8 [674] problem number 8

problem number 674

Added January 20, 2019.

Problem 2.6.3.8 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) wx+(atann(λx)y2ab2tann+2(λx)+bλtan2(λx)+bλ)wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (a*Tan[lambda*x]^n*y^2 - a*b^2*Tan[lambda*x]^(n + 2) + b*lambda*Tan[lambda*x]^2 + b*lambda)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)+(a*tan(lambda*x)^n*y^2- a*b^2*tan(lambda*x)^(n+2) + b*lambda*tan(lambda*x)^2+ b*lambda)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

sol=()

____________________________________________________________________________________

7.2.17.9 [675] problem number 9

problem number 675

Added January 20, 2019.

Problem 2.6.3.9 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) wx+(atank(λx+μ)(ybxnc)2+ybxn+bnxn1c)wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (a*Tan[lambda*x + mu]^k*(y - b*x^n - c)^2 + y - b*x^n + b*n*x^(n - 1) - c)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)+(a *tan(lambda*x+mu)^k*(y-b*x^n-c)^2 + y- b*x^n + b*n*x^(n-1)-c)*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

time expired

____________________________________________________________________________________

7.2.17.10 [676] problem number 10

problem number 676

Added January 20, 2019.

Problem 2.6.3.10 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) xwx+(atanm(λx)y2+ky+ab2x2ktanm(λx))wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  x*D[w[x, y], x] + (a*Tan[lambda*x]^m*y^2 + k*y + a*b^2*x^(2*k)*Tan[lambda*x]^m)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c1(tan1(yxkb2)b21xaK[1]k1tanm(λK[1])dK[1])}}

Maple

restart; 
pde :=  x*diff(w(x,y),x)+ (a*tan(lambda*x)^m*y^2 +k*y+ a*b^2*x^(2*k)*tan(lambda*x)^m )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1(ab(xk1(tanm(λx))dx)arctan(yxkb))

____________________________________________________________________________________

7.2.17.11 [677] problem number 11

problem number 677

Added January 20, 2019.

Problem 2.6.3.11 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) (atan(λx)+b)wx+(y2+ctan(μx)yk2+cktan(μx))wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  (a*Tan[lambda*x] + b)*D[w[x, y], x] + (y^2 + c*Tan[mu*x]*y - k^2 + c*k*Tan[mu*x])*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=   (a*tan(lambda*x)+b)*diff(w(x,y),x)+ (y^2+ c *tan(mu*x)*y - k^2 + c*k*tan(mu*x) )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1(((k+y)(e2iμx+1)ia2c(ib+a)(a2+b2)μ(e2iμx+1)ib2c(ib+a)(a2+b2)μ((asin(λx)+bcos(λx)cos(λx))2ak(a2+b2)λ(2cos(2λx)+1)ak(a2+b2)λ(e2iμx+1)ia2c(ib+a)(a2+b2)μ(e2iμx+1)ib2c(ib+a)(a2+b2)μcos(λx)eia2c(4i(e2iμx1)a(ib+a)(a+ib+(ib+a)e2iλx)(e2iμx+1)dx)2a2+2b2eib2c(4i(e2iμx1)a(ib+a)(a+ib+(ib+a)e2iλx)(e2iμx+1)dx)2a2+2b2e2bkarctan(sin(λx)cos(λx))(a2+b2)λea2cx(a2+b2)(ib+a)eb2cx(a2+b2)(ib+a)asin(λx)+bcos(λx)dx)ea2cx(a2+b2)(ib+a)eb2cx(a2+b2)(ib+a)e2bkarctan(sin(λx)cos(λx))(a2+b2)λ+(asin(λx)+bcos(λx)cos(λx))2ak(a2+b2)λ(2cos(2λx)+1)ak(a2+b2)λeia2c(4i(e2iμx1)a(ib+a)(a+ib+(ib+a)e2iλx)(e2iμx+1)dx)2a2+2b2eib2c(4i(e2iμx1)a(ib+a)(a+ib+(ib+a)e2iλx)(e2iμx+1)dx)2a2+2b2)(e2iμx+1)ia2c(ib+a)(a2+b2)μ(e2iμx+1)ib2c(ib+a)(a2+b2)μe2bkarctan(sin(λx)cos(λx))(a2+b2)λea2cx(a2+b2)(ib+a)eb2cx(a2+b2)(ib+a)k+y)

____________________________________________________________________________________

7.2.17.12 [678] problem number 12

problem number 678

Added January 20, 2019.

Problem 2.6.3.12 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) (axnym+bx)wx+tank(λy)wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  (a*x^n*y^m + b*x)*D[w[x, y], x] + Tan[lambda*y]^k*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=   (a*x^n*y^m + b*x)*diff(w(x,y),x)+ tan(lambda*y)^k*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1((n1)a(ym(tank(λy))e(n1)b((tank(λy))dy)dy)+xn+1e(n1)b((tank(λy))dy))

____________________________________________________________________________________

7.2.17.13 [679] problem number 13

problem number 679

Added January 20, 2019.

Problem 2.6.3.13 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) (axn+bxtanmy)wx+ykwy=0

Mathematica

ClearAll["Global`*"]; 
pde =  (a*x^n + b*x*Tan[y]^m)*D[w[x, y], x] + y^k*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=   (a*x^n + b*x*tan(y)^m)*diff(w(x,y),x)+ y^k*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1((n1)a(yke(n1)b(yk(tanm(y))dy)dy)+xn+1e(n1)b(yk(tanm(y))dy))

____________________________________________________________________________________

7.2.17.14 [680] problem number 14

problem number 680

Added January 20, 2019.

Problem 2.6.3.14 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) (axn+bxtanmy)wx+tank(λy)wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  (a*x^n + b*x*Tan[y]^m)*D[w[x, y], x] + Tan[lambda*y]^k*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=   (a*x^n + b*x*tan(y)^m)*diff(w(x,y),x)+  tan(lambda*y)^k*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1((n1)a((tank(λy))e(n1)b((tanm(y))(tank(λy))dy)dy)+xn+1e(n1)b((tanm(y))(tank(λy))dy))

____________________________________________________________________________________

7.2.17.15 [681] problem number 15

problem number 681

Added January 20, 2019.

Problem 2.6.3.15 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y)

(axntanmy+bx)wx+tank(λy)wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  (a*x^n*Tan[y]^m + b*x)*D[w[x, y], x] + Tan[lambda*y]^k*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=   (a*x^n*tan(y)^m+ b*x)*diff(w(x,y),x)+  tan(lambda*y)^k*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1((n1)a((tanm(y))(tank(λy))e(n1)b((tank(λy))dy)dy)+xn+1e(n1)b((tank(λy))dy))

____________________________________________________________________________________