Added January 14, 2019.
Problem 2.6.3.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a + Tan[lambda*x] + b)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x)+(a+tan(lambda*x)+b)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________
Added January 14, 2019.
Problem 2.6.3.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a + Tan[lambda*y] + b)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x)+(a+tan(lambda*y)+b)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________
Added January 14, 2019.
Problem 2.6.3.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + a*Tan[lambda*x]^k*Tan[mu*y]^n*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x)+a *tan(lambda*x)^k * tan(mu*y)^n*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________
Added January 14, 2019.
Problem 2.6.3.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (y^2 + a*lambda + a*(lambda - a)*Tan[lambda*x]^2)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+( y^2+ a *lambda + a*(lambda -a) *tan(lambda*x)^2)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________
Added January 14, 2019.
Problem 2.6.3.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (y^2 + lambda^2 + 3*a*lambda + a*(lambda - a)*Tan[lambda*x]^2)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+( y^2+ lambda^2 +3*a*lambda +a*(lambda-a)*tan(lambda*x)^2)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________
Added January 14, 2019.
Problem 2.6.3.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (y^2 + a*x*Tan[b*x]^k*y + a*Tan[b*x]^k)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := diff(w(x,y),x)+( y^2+ a*x *tan(b*x)^k * y + a*tan(b*x)^k)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________
Added January 14, 2019.
Problem 2.6.3.7 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] - ((k + 1)*x^k*y^2 - a*x^(k + 1)*Tan[x]^m*y + a*Tan[x]^m)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)-( (k+1)*x^k*y^2- a*x^(k+1)*tan(x)^m*y + a*tan(x)^m )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________
Added January 20, 2019.
Problem 2.6.3.8 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*Tan[lambda*x]^n*y^2 - a*b^2*Tan[lambda*x]^(n + 2) + b*lambda*Tan[lambda*x]^2 + b*lambda)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y),x)+(a*tan(lambda*x)^n*y^2- a*b^2*tan(lambda*x)^(n+2) + b*lambda*tan(lambda*x)^2+ b*lambda)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
sol=()
____________________________________________________________________________________
Added January 20, 2019.
Problem 2.6.3.9 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*Tan[lambda*x + mu]^k*(y - b*x^n - c)^2 + y - b*x^n + b*n*x^(n - 1) - c)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y),x)+(a *tan(lambda*x+mu)^k*(y-b*x^n-c)^2 + y- b*x^n + b*n*x^(n-1)-c)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
time expired
____________________________________________________________________________________
Added January 20, 2019.
Problem 2.6.3.10 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✓
ClearAll["Global`*"]; pde = x*D[w[x, y], x] + (a*Tan[lambda*x]^m*y^2 + k*y + a*b^2*x^(2*k)*Tan[lambda*x]^m)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Maple ✓
restart; pde := x*diff(w(x,y),x)+ (a*tan(lambda*x)^m*y^2 +k*y+ a*b^2*x^(2*k)*tan(lambda*x)^m )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________
Added January 20, 2019.
Problem 2.6.3.11 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✗
ClearAll["Global`*"]; pde = (a*Tan[lambda*x] + b)*D[w[x, y], x] + (y^2 + c*Tan[mu*x]*y - k^2 + c*k*Tan[mu*x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := (a*tan(lambda*x)+b)*diff(w(x,y),x)+ (y^2+ c *tan(mu*x)*y - k^2 + c*k*tan(mu*x) )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________
Added January 20, 2019.
Problem 2.6.3.12 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✗
ClearAll["Global`*"]; pde = (a*x^n*y^m + b*x)*D[w[x, y], x] + Tan[lambda*y]^k*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := (a*x^n*y^m + b*x)*diff(w(x,y),x)+ tan(lambda*y)^k*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________
Added January 20, 2019.
Problem 2.6.3.13 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✗
ClearAll["Global`*"]; pde = (a*x^n + b*x*Tan[y]^m)*D[w[x, y], x] + y^k*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := (a*x^n + b*x*tan(y)^m)*diff(w(x,y),x)+ y^k*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________
Added January 20, 2019.
Problem 2.6.3.14 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✗
ClearAll["Global`*"]; pde = (a*x^n + b*x*Tan[y]^m)*D[w[x, y], x] + Tan[lambda*y]^k*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := (a*x^n + b*x*tan(y)^m)*diff(w(x,y),x)+ tan(lambda*y)^k*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________
Added January 20, 2019.
Problem 2.6.3.15 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for
Mathematica ✗
ClearAll["Global`*"]; pde = (a*x^n*Tan[y]^m + b*x)*D[w[x, y], x] + Tan[lambda*y]^k*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := (a*x^n*tan(y)^m+ b*x)*diff(w(x,y),x)+ tan(lambda*y)^k*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
____________________________________________________________________________________