2.1.11 3ux+5uy=x

problem number 11

Taken from Mathematica help pages

Solve for u(x,y) 3ux+5uy=x

Mathematica

ClearAll["Global`*"]; 
sol = AbsoluteTiming[TimeConstrained[DSolve[3*D[u[x, y], x] + 5*D[u[x, y], y] == x, u[x, y], {x, y}], 60*10]];
 

{{u(x,y)x26+c1(y5x3)}}

Maple

restart; 
interface(showassumed=0); 
pde :=3*diff(u(x, y), x) + 5*diff(u(x, y), y) = x; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,u(x,y))),output='realtime'));
 

u(x,y)=x26+_F1(5x3+y)

Hand solution

Solve3ux+5uy=x(1)ux+53uy=x3

Solution

Let u=u(y(x),x). Then (2)dudx=uydydx+ux Comparing (1),(2) shows that (3)dudx=x3(4)dydx=53

Solving (3) givesu=x26+C1C1=ux26

From (4)y=53x+C2C2=y53x

Let C1=F(C2) where F is arbutrary function. This givesux26=F(y53x)u(x,y)=F(y53x)+x26

____________________________________________________________________________________