Added December 20, 2018.
Laplace like PDE with polynomial solution. Solve for \(u(x,y)\) \[ u_{xx} + y u_{yy} = 0 \] With boundary conditions \begin {align*} u(x,0)&=0 \\ \frac {\partial u}{\partial y}(x,0) &=x^2 \end {align*}
Mathematica ✓
ClearAll["Global`*"]; pde = D[u[x, y], {x, 2}] + y*D[u[x, y], {y, 2}] == 0; bc = {u[x, 0] == 0, Derivative[0, 1][u][x, 0] == x^2}; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bc}, u[x, y], {x, y}], 60*10]];
\[\left \{\left \{u(x,y)\to -y \left (y-x^2\right )\right \}\right \}\]
Maple ✓
restart; pde := diff(u(x, y), x$2)+y*(diff(u(x, y), y$2)) = 0; bc := u(x,0)=0, eval(diff(u(x,y),y),y=0)=x^2; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde, bc], u(x, y))),output='realtime'));
\[u \left (x , y\right ) = \left (x^{2}-y \right ) y\]
____________________________________________________________________________________