7.9.1 2.1

7.9.1.1 [1921] Problem 1
7.9.1.2 [1922] Problem 2
7.9.1.3 [1923] Problem 3
7.9.1.4 [1924] Problem 4
7.9.1.5 [1925] Problem 5
7.9.1.6 [1926] Problem 6
7.9.1.7 [1927] Problem 7
7.9.1.8 [1928] Problem 8
7.9.1.9 [1929] Problem 9

7.9.1.1 [1921] Problem 1

problem number 1921

Added Jan 6, 2020.

Problem Chapter 9.2.1.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) awx+bwy+cwz=(αx+β)w+px+q

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x,y,z],x]+b*D[w[x,y,z],y]+c*D[w[x,y,z],z]==(alpha*x+beta)*w[x,y,z]+p*x+q; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)ex(αx+2β)2ac1(ybxa,zcxa)+π2e(αx+β)22aα(αqβp)erf(αx+β2aα)aα3/2pα}}

Maple

restart; 
local gamma; 
pde :=  a*diff(w(x,y,z),x)+ b*diff(w(x,y,z),y)+ c*diff(w(x,y,z),z)=(alpha*x+beta)*w(x,y,z)+p*x+q; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=(2π(αq+βp)erf(2αax2+2β2αaa)eβ22aα2+αa(α_F1(aybxa,azcxa)pe(αx+2β)x2a)a)e(αx+2β)x2aαaaα

____________________________________________________________________________________

7.9.1.2 [1922] Problem 2

problem number 1922

Added Jan 6, 2020.

Problem Chapter 9.2.1.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) wx+azwy+bywz=(cx+k)w+px+q

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x,y,z],x]+a*z*D[w[x,y,z],y]+b*y*D[w[x,y,z],z]==(c*x+k)*w[x,y,z]+p*x+q; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)e12x(cx+2k)c1(eabx(by(e2abx+1)az(e2abx1))2b,eabx(az(e2abx+1)by(e2abx1))2a)+π2e(cx+k)22cerf(cx+k2c)(cqkp)c3/2pc}}

Maple

restart; 
local gamma; 
pde :=  diff(w(x,y,z),x)+ a*z*diff(w(x,y,z),y)+ b*y*diff(w(x,y,z),z)=(c*x+k)*w(x,y,z)+p*x+q; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=(y((ln(_bab+ab(az2+(_b2y2)b)aab)+ln(aby+a2z2abab))p+(pxq)ab)e(ln(_bab+ab(az2+(_b2y2)b)aab)+ln(aby+a2z2abab))c+(cxk)ab(az2+(_b2y2)b)ad_babab(az2+(_b2y2)b)ad_b+_F1(az2by2a,abx+ln(aby+a2z2abab)ab))ey(ln(_aab+(az2+(_a2y2)b)aabab)+ln(aby+a2z2abab))c+(cxk)abab(az2+(_a2y2)b)ad_a

____________________________________________________________________________________

7.9.1.3 [1923] Problem 3

problem number 1923

Added Jan 6, 2020.

Problem Chapter 9.2.1.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) wx+(a1x+a0)wy+(b1x+b0)wz=(c1x+c0)w+s1x+s0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x,y,z],x]+(a1*x+a0)*D[w[x,y,z],y]+(b1*x+b0)*D[w[x,y,z],z]==(c1*x+c0)*w[x,y,z]+s1*x+s0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)e12x(2c0+c1x)c1(a0xa1x22+y,b0xb1x22+z)+π2e(c0+c1x)22c1erf(c0+c1x2c1)(c1s0c0s1)c13/2s1c1}}

Maple

restart; 
local gamma; 
pde :=  diff(w(x,y,z),x)+ (a__1*x+a__0)*diff(w(x,y,z),y)+ (b__1*x+b__0)*diff(w(x,y,z),z)=(c__1*x+c__0)*w(x,y,z)+s__1*x+s__0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=(2c152_F1(12a1x2a0x+y,12b1x2b0x+z)2c132s1e12c1x2c0x+2π(c0s1+c1s0)c1erf(2(c1x+c0c1)2)ec022c1)e(c1x+2c0)x22c152

____________________________________________________________________________________

7.9.1.4 [1924] Problem 4

problem number 1924

Added Jan 6, 2020.

Problem Chapter 9.2.1.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) wx+(b1x+b0)wy+(c1y+c0)wz=aw+s1x+s0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x,y,z],x]+(b1*x+b0)*D[w[x,y,z],y]+(c1*y+c0)*D[w[x,y,z],z]==a*w[x,y,z]+s1*x+s0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)a2(eax)c1(b0xb1x22+y,12b0c1x2+13b1c1x3c0xc1xy+z)+as0+as1x+s1a2}}

Maple

restart; 
local gamma; 
pde :=  diff(w(x,y,z),x)+ (b__1*x+b__0)*diff(w(x,y,z),y)+ (c__1*x+c__0)*diff(w(x,y,z),z)=a*w(x,y,z)+s__1*x+s__0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=a2_F1(12b1x2b0x+y,12c1x2c0x+z)eax+(s1xs0)as1a2

____________________________________________________________________________________

7.9.1.5 [1925] Problem 5

problem number 1925

Added Jan 6, 2020.

Problem Chapter 9.2.1.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) wx+(ay+k1x+k0)wy+(bz+n1x+n0)wz=(c1x+c0)w+s1x+s0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x,y,z],x]+(a*y+k1*x+k0)*D[w[x,y,z],y]+(b*z+n1*x+n0)*D[w[x,y,z],z]==(c1*x+c0)*w[x,y,z]+s1*x+s0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)e12x(2c0+c1x)c1(eax(a2y+a(k0+k1x)+k1)a2,ebx(b2z+b(n0+n1x)+n1)b2)+π2e(c0+c1x)22c1erf(c0+c1x2c1)(c1s0c0s1)c13/2s1c1}}

Maple

restart; 
local gamma; 
pde :=  diff(w(x,y,z),x)+ (a*y+k__1*x+k__0)*diff(w(x,y,z),y)+ (b*z+n__1*x+n__0)*diff(w(x,y,z),z)=(c__1*x+c__0)*w(x,y,z)+s__1*x+s__0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=(2c152_F1((a2y+(k1x+k0)a+k1)eaxa2,(b2z+(n1x+n0)b+n1)ebxb2)2c132s1e12c1x2c0x+2π(c0s1+c1s0)c1erf(2(c1x+c0c1)2)ec022c1)e(c1x+2c0)x22c152

____________________________________________________________________________________

7.9.1.6 [1926] Problem 6

problem number 1926

Added Jan 6, 2020.

Problem Chapter 9.2.1.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) wx+(a2y+a1x+a0)wy+(b3z+b2y+b1x+b0)wz=(c3z+c2y+c1x+c0)w+s3z+s2y+s1x+s0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x,y,z],x]+(a2*y+a1*x+a0)*D[w[x,y,z],y]+(b3*z+b2*y+b1*x+b0)*D[w[x,y,z],z]==(c3*z+c2*y+c1*x+c0)*w[x,y,z]+s3*z+s2*y+s1*x+s0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

$Aborted

Maple

restart; 
local gamma; 
pde :=  diff(w(x,y,z),x)+ (a__2*y+a__1*x+a__0)*diff(w(x,y,z),y)+ (b__3*z+b__2*y+b__1*x+b__0)*diff(w(x,y,z),z)=(c__3*z+c__2*y+c__1*x+c__0)*w(x,y,z)+s__3*z+s__2*y+s__1*x+s__0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

time expired

____________________________________________________________________________________

7.9.1.7 [1927] Problem 7

problem number 1927

Added Jan 6, 2020.

Problem Chapter 9.2.1.7, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) axwx+bxwy+czwz=(αx+β)w+px+q

Mathematica

ClearAll["Global`*"]; 
pde =  a*x*D[w[x,y,z],x]+b*x*D[w[x,y,z],y]+c*z*D[w[x,y,z],z]==(alpha*x+beta)*w[x,y,z]+p*x+q; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)eαxa((αxa)βa(apGamma(1βa,αxa)+αqGamma(βa,αxa))+aαxβac1(ybxa,zxca))aα}}

Maple

restart; 
local gamma; 
pde :=  a*x*diff(w(x,y,z),x)+ b*x*diff(w(x,y,z),y)+ c*z*diff(w(x,y,z),z)=(alpha*x+beta)*w(x,y,z)+p*x+q; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=3((αx+aβ)(aβ3)a2qxβa1(αa)βa(αa)βa(αxa)aβ2aWhittakerM(aβ2a,2aβ2a,αxa)eαx2a4(aβ2)2aβpxβa(αa)βa(αa)βa(αxa)2a+β2aWhittakerM(2aβ2a,3aβ2a,αxa)eαx2a3+(aβ)2(aβ3)aqxβa1(αa)βa(αa)βa(αxa)aβ2aWhittakerM(aβ2a,2aβ2a,αxa)eαx2a2((αx2+aβ2)a2pxβa(αa)βa(αa)βa(αxa)2a+β2aWhittakerM(β2a,3aβ2a,αxa)eαx2a3+(aβ2)(aβ)(aβ3)α_F1(aybxa,zxca))β)xβaeαxa(aβ)(2aβ)(3aβ)αβ

____________________________________________________________________________________

7.9.1.8 [1928] Problem 8

problem number 1928

Added Jan 6, 2020.

Problem Chapter 9.2.1.8, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) axwx+bywy+czwz=(αx+β)w+px+q

Mathematica

ClearAll["Global`*"]; 
pde =  a*x*D[w[x,y,z],x]+b*y*D[w[x,y,z],y]+c*z*D[w[x,y,z],z]==(alpha*x+beta)*w[x,y,z]+p*x+q; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)eαxa((αxa)βa(apGamma(1βa,αxa)+αqGamma(βa,αxa))+aαxβac1(yxba,zxca))aα}}

Maple

restart; 
local gamma; 
pde :=  a*x*diff(w(x,y,z),x)+ b*y*diff(w(x,y,z),y)+ c*z*diff(w(x,y,z),z)=(alpha*x+beta)*w(x,y,z)+p*x+q; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=3((αx+aβ)(aβ3)a2qxβa1(αa)βa(αa)βa(αxa)aβ2aWhittakerM(aβ2a,2aβ2a,αxa)eαx2a4(aβ2)2aβpxβa(αa)βa(αa)βa(αxa)2a+β2aWhittakerM(2aβ2a,3aβ2a,αxa)eαx2a3+(aβ)2(aβ3)aqxβa1(αa)βa(αa)βa(αxa)aβ2aWhittakerM(aβ2a,2aβ2a,αxa)eαx2a2((αx2+aβ2)a2pxβa(αa)βa(αa)βa(αxa)2a+β2aWhittakerM(β2a,3aβ2a,αxa)eαx2a3+(aβ2)(aβ)(aβ3)α_F1(yxba,zxca))β)xβaeαxa(aβ)(2aβ)(3aβ)αβ

____________________________________________________________________________________

7.9.1.9 [1929] Problem 9

problem number 1929

Added Jan 6, 2020.

Problem Chapter 9.2.1.9, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) xwx+azwy+bywz=(cx+k)w+px+q

Mathematica

ClearAll["Global`*"]; 
pde =  x*D[w[x,y,z],x]+a*z*D[w[x,y,z],y]+b*y*D[w[x,y,z],z]==(c*x+k)*w[x,y,z]+p*x+q; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)ecx((cx)k(pGamma(1k,cx)+cqGamma(k,cx))+cxkc1(iysinh(ablog(x))iazcosh(ablog(x))b,ycosh(ablog(x))azsinh(ablog(x))b))c}}

Maple

restart; 
local gamma; 
pde :=  x*diff(w(x,y,z),x)+ a*z*diff(w(x,y,z),y)+ b*y*diff(w(x,y,z),z)=(c*x+k)*w(x,y,z)+p*x+q; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=(y(px(_bab+ab(az2+(_b2y2)b)aab)1ab(az+aby)abab+q)e(cx(_bab+ab(az2+(_b2y2)b)aab)1ab(az+aby)abab+k(az2+(_b2y2)b)ad_b)(az2+(_b2y2)b)ad_b+_F1(az2by2a,x(az+aby)abab))eycx(_aab+(az2+(_a2y2)b)aabab)1ab(az+aby)abab+k(az2+(_a2y2)b)ad_a

____________________________________________________________________________________