7.8.2 2.2

7.8.2.1 [1761] Problem 1
7.8.2.2 [1762] Problem 2
7.8.2.3 [1763] Problem 3
7.8.2.4 [1764] Problem 4
7.8.2.5 [1765] Problem 5
7.8.2.6 [1766] Problem 6
7.8.2.7 [1767] Problem 7
7.8.2.8 [1768] Problem 8
7.8.2.9 [1769] Problem 9

7.8.2.1 [1761] Problem 1

problem number 1761

Added June 28, 2019.

Problem Chapter 8.2.2.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

awx+bwy+cwz=(λx2+βy2+γz2+δ)w

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*D[w[x, y,z], y] +c*D[w[x,y,z],z]== (alpha*x^2+beta*y^2+gamma*z^2+delta)*w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)c1(ybxa,zcxa)exp(13(αx3+3δxa+βy3b+γz3c))}}

Maple

restart; 
local gamma; 
pde :=   a*diff(w(x,y,z),x)+b*diff(w(x,y,z),y)+c*diff(w(x,y,z),z)=  (alpha*x^2+beta*y^2+gamma*z^2+delta)*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(aybxa,azcxa)e((αx23+βy2+γz2+δ)a2(bβy+cγz)ax+(b2β+c2γ)x23)xa3

____________________________________________________________________________________

7.8.2.2 [1762] Problem 2

problem number 1762

Added June 28, 2019.

Problem Chapter 8.2.2.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

wx+(a1x2+a0)wy+(b1x2+b0)wz=(λx+βy+γz+δ)w

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + (a1*x^2+a0)*D[w[x, y,z], y] +(b1*x^2+b0)*D[w[x,y,z],z]== (alpha*x+beta*y+gamma*z+delta)*w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)c1(a0xa1x33+y,b0xb1x33+z)exp(14x(2a0βx+a1βx32αx+2b0γx+b1γx34βy4δ4γz))}}

Maple

restart; 
local gamma; 
pde :=   diff(w(x,y,z),x)+(a1*x^2+a0)*diff(w(x,y,z),y)+(b1*x^2+b0)*diff(w(x,y,z),z)=  (alpha*x+beta*y+gamma*z+delta)*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(13a1x3a0x+y,13b1x3b0x+z)e(2αx+(a1x3+2a0x4y)β4δ+(b1x3+2b0x4z)γ)x4

____________________________________________________________________________________

7.8.2.3 [1763] Problem 3

problem number 1763

Added June 28, 2019.

Problem Chapter 8.2.2.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

wx+(ay+k1x2+k0)wy+(bz+s1x2+s0)wz=(c1x2+c0)w

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + (a*y+k1*x^2+k0)*D[w[x, y,z], y] +(b*z+s1*x^2+s0)*D[w[x,y,z],z]== (c1*x^2+c0)*w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)ec0x+c1x33c1(eax(a2(k0+k1x2)+a3y+2ak1x+2k1)a3,ebx(b2(s0+s1x2)+b3z+2bs1x+2s1)b3)}}

Maple

restart; 
local gamma; 
pde :=   diff(w(x,y,z),x)+(a*y+k1*x^2+k0)*diff(w(x,y,z),y)+(b*z+s1*x^2+s0)*diff(w(x,y,z),z)=  (c1*x^2+c0)*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1((a3y+2ak1x+(k1x2+k0)a2+2k1)eaxa3,(b3z+2bs1x+(s1x2+s0)b2+2s1)ebxb3)e(c1x2+3c0)x3

____________________________________________________________________________________

7.8.2.4 [1764] Problem 4

problem number 1764

Added June 28, 2019.

Problem Chapter 8.2.2.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

wx+(a2xy+a1x2+a0)wy+(b2xy+b1x2+b0)wz=(c2y+c1z+c0x+s)w

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + (a1*x*y+a1*x^2+a0)*D[w[x, y,z], y] +(b2*x*y+b1*x^2+b0)*D[w[x,y,z],z]== (c2*x+c1*z+c0*x+s)*w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)c1(a0b2xa1b2ya1b0xb1x33+b2x33+z,ea1x22(x+y)π2(a0+1)erf(a1x2)a1)exp(2(a0+1)a1b2c1x2HypergeometricPFQ({1,1},{32,2},a1x22)+2b2c1ea1x22Erfi(a1x2)(2πa1(x+y)π(a0+1)ea1x22erf(a1x2))+a1x(2b2c1((a01)x2y)+a1(2b0c1xb1c1x3+b2c1x3+2c0x+4c1z+2c2x+4s))4a12)}}

Maple

restart; 
local gamma; 
pde :=   diff(w(x,y,z),x)+(a1*x*y+a1*x^2+a0)*diff(w(x,y,z),y)+(b2*x*y+b1*x^2+b0)*diff(w(x,y,z),z)=  (c2*x+c1*z+c0*x+s)*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1((x+y)a1ea1x22π2(a0+1)erf(2a1x2)2a1,3(2(a0+1)(πa1πa11)erf(2a1x2)2+a1π(x+y)ea1x22)b2ea1x22+a1π((a1x2+3a0+3)b2x+(b1x3+3b0x3z)a1)3a1πa1)ex2(_a2a1+3a0+3)_ab2c13((2x2y)ea1x22+2π(a0+1)erf(2a1x2)a1)b2c1e_a2a12+6(_a3b1c13+(b0c1+c0+c2)_a+s)a12(32(a0+1)b2erf(2_aa12)e_a2a12232(a0+1)(πa1πa11)b2erf(2a1x2)ea1x222+3a1π(x+y)b2ea1x22ea1x22+a1π((a1x2+3a0+3)b2x+(b1x3+3b0x3z)a1))c1a1π6a1d_a

____________________________________________________________________________________

7.8.2.5 [1765] Problem 5

problem number 1765

Added June 28, 2019.

Problem Chapter 8.2.2.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

axwx+bywy+czwz=x(λx+βy+γz)w

Mathematica

ClearAll["Global`*"]; 
pde =  a*x*D[w[x, y,z], x] + b*y*D[w[x, y,z], y] +c*z*D[w[x,y,z],z]== x*(lambda*x+beta*y+gama*z)*w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)c1(yxba,zxca)eβxya+b+gamaxza+c+λx22a}}

Maple

restart; 
local gamma; 
pde :=   a*x*diff(w(x,y,z),x)+b*y*diff(w(x,y,z),y)+c*z*diff(w(x,y,z),z)=  x*(lambda*x+beta*y+gama*z)*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(yxba,zxca)e(bcλx+(2βy+2gamaz+λx)a2+(2bgamaz+2βcy+(b+c)λx)a)x2(a+b)(a+c)a

____________________________________________________________________________________

7.8.2.6 [1766] Problem 6

problem number 1766

Added June 28, 2019.

Problem Chapter 8.2.2.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

ax2wx+bxywy+cxzwz=(λx+βy+γz)w

Mathematica

ClearAll["Global`*"]; 
pde =  a*x^2*D[w[x, y,z], x] + b*x*y*D[w[x, y,z], y] +c*x*z*D[w[x,y,z],z]== (lambda*x+beta*y+gama*z)*w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)xλaeβyab+gamazacxc1(yxba,zxca)}}

Maple

restart; 
local gamma; 
pde :=   a*x^2*diff(w(x,y,z),x)+b*x*y*diff(w(x,y,z),y)+c*x*z*diff(w(x,y,z),z)=  (lambda*x+beta*y+gama*z)*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=xλa_F1(yxba,zxca)e(ac)βy(ab)gamaz(ab)(ac)x

____________________________________________________________________________________

7.8.2.7 [1767] Problem 7

problem number 1767

Added June 28, 2019.

Problem Chapter 8.2.2.7, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

ax2wx+bxywy+cz2wz=ky2w

Mathematica

ClearAll["Global`*"]; 
pde =  a*x^2*D[w[x, y,z], x] + b*x*y*D[w[x, y,z], y] +c*z^2*D[w[x,y,z],z]== k*y^2*w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)eky2ax2bxc1(yxba,cax1z)}}

Maple

restart; 
local gamma; 
pde :=   a*x^2*diff(w(x,y,z),x)+b*x*y*diff(w(x,y,z),y)+c*z^2*diff(w(x,y,z),z)=  k*y^2*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(yxba,axczaxz)eky2(a2b)x

____________________________________________________________________________________

7.8.2.8 [1768] Problem 8

problem number 1768

Added June 28, 2019.

Problem Chapter 8.2.2.8, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

ax2wx+by2wy+cz2wz=kxyw

Mathematica

ClearAll["Global`*"]; 
pde =  a*x^2*D[w[x, y,z], x] + b*y^2*D[w[x, y,z], y] +c*z^2*D[w[x,y,z],z]== k*x*y*w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)(axy)kxyaxbyc1(bax1y,cax1z)}}

Maple

restart; 
local gamma; 
pde :=   a*x^2*diff(w(x,y,z),x)+b*y^2*diff(w(x,y,z),y)+c*z^2*diff(w(x,y,z),z)=  k*x*y*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=(axy)kxyaxby_F1(axbyaxy,axczaxz)

____________________________________________________________________________________

7.8.2.9 [1769] Problem 9

problem number 1769

Added June 28, 2019.

Problem Chapter 8.2.2.9, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) ax2wx+by2wy+cz2wz=(λx2+βy2+γz2)w

Mathematica

ClearAll["Global`*"]; 
pde =  a*x^2*D[w[x, y,z], x] + b*y^2*D[w[x, y,z], y] +c*z^2*D[w[x,y,z],z]== (lambda*x^2+beta*y^2+gamma*z^2)*w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)c1(bax1y,cax1z)exp(βy2byax+γz2czax+λxa)}}

Maple

restart; 
local gamma; 
pde :=   a*x^2*diff(w(x,y,z),x)+b*y^2*diff(w(x,y,z),y)+c*z^2*diff(w(x,y,z),z)=  (lambda*x^2+beta*y^2+gamma*z^2)*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(axbyaxy,axczaxz)ebcλxyz+(βy2γz2+λx2)a2x+(βcy2zcλx2z(γz2+λx2)by)a(axcz)(axby)a

____________________________________________________________________________________