7.4.7 3.2

7.4.7.1 [1071] Problem 1
7.4.7.2 [1072] Problem 2
7.4.7.3 [1073] Problem 3
7.4.7.4 [1074] Problem 4
7.4.7.5 [1075] Problem 5
7.4.7.6 [1076] Problem 6
7.4.7.7 [1077] Problem 7

7.4.7.1 [1071] Problem 1

problem number 1071

Added Feb. 23, 2019.

Problem Chapter 4.3.2.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) awx+bwy=(cyeλx+kxeμy)w

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y], x] + b*D[w[x, y], y] == (c*y*Exp[lambda*x] + k*x*Exp[mu*y])*w[x, y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c1(ybxa)exp(bceλxa2λ2akeμyb2μ2+cyeλxaλ+kxeμybμ)}}

Maple

restart; 
pde := a*diff(w(x,y),x)+b*diff(w(x,y),y) =   (c*y*exp(lambda*x) + k*x*exp(mu*y))*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1(aybxa)e(bμx+a)a2kλ2eμy+(aλyb)b2cμ2eλxa2b2λ2μ2

____________________________________________________________________________________

7.4.7.2 [1072] Problem 2

problem number 1072

Added Feb. 23, 2019.

Problem Chapter 4.3.2.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) xwx+ywy=axeλx+μyw

Mathematica

ClearAll["Global`*"]; 
pde =  x*D[w[x, y], x] + y*D[w[x, y], y] == a*x*Exp[lambda*x + mu*y]*w[x, y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c1(yx)eaxeλx+μyλx+μy}}

Maple

restart; 
pde := x*diff(w(x,y),x)+y*diff(w(x,y),y) =   a*x*exp(lambda*x+mu*y)*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1(yx)eaeλx+μyλ+μyx

____________________________________________________________________________________

7.4.7.3 [1073] Problem 3

problem number 1073

Added Feb. 23, 2019.

Problem Chapter 4.3.2.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) xwx+ywy=(ayeλx+bxeμy)w

Mathematica

ClearAll["Global`*"]; 
pde =  x*D[w[x, y], x] + y*D[w[x, y], y] == (a*y*Exp[lambda*x] + b*x*Exp[mu*y])*w[x, y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c1(yx)eayeλxλx+bxeμyμy}}

Maple

restart; 
pde := x*diff(w(x,y),x)+y*diff(w(x,y),y) =    (a*y*exp(lambda*x)+ b*x*exp(mu*y))*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1(yx)e(aμy2eλxx2+bλeμy)xλμy

____________________________________________________________________________________

7.4.7.4 [1074] Problem 4

problem number 1074

Added Feb. 23, 2019.

Problem Chapter 4.3.2.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) axkwx+beλywy=(cxn+s)w

Mathematica

ClearAll["Global`*"]; 
pde =  a*x^k*D[w[x, y], x] + b*Exp[lambda*y]*D[w[x, y], y] == (c*x^n + s)*w[x, y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)ex1k(cxnk+n+1+s1k)ac1(bx1ka(k1)eλyλ)}}

Maple

restart; 
pde := a*x^k*diff(w(x,y),x)+b*exp(lambda*y)*diff(w(x,y),y) =    (c*x^n+s)*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1(bλxk+1(k1)aeλy(k1)bλ)e((k1)cxn+(kn1)s)xk+1(k1)(kn1)a

____________________________________________________________________________________

7.4.7.5 [1075] Problem 5

problem number 1075

Added Feb. 23, 2019.

Problem Chapter 4.3.2.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) aykwx+beλxwy=(ceμx+s)w

Mathematica

ClearAll["Global`*"]; 
pde =  a*y^k*D[w[x, y], x] + b*Exp[lambda*x]*D[w[x, y], y] == (c*Exp[mu*x] + s)*w[x, y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c1(yk+1k+1beλxaλ)exp(yk+1((yk+1)1k+1)k(cλeμx2F1(1,λ+kμ+μkλ+λ;λ+μλ;beλx(k+1)beλx(k+1)aλyk+1)(k+1)μs2F1(1,1k+1;k+2k+1;aλyk+1aλyk+1beλx(k+1)))μ(b(k+1)eλxaλyk+1))}}

Maple

restart; 
pde := a*y^k*diff(w(x,y),x)+b*exp(lambda*x)*diff(w(x,y),y) =   (c*exp(mu*x)+s)*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1(aλyyk(k+1)beλxaλ)ex(ce_aμ+s)((aλyk+1+(k+1)be_aλ(k+1)beλxaλ)1k+1)kad_a

____________________________________________________________________________________

7.4.7.6 [1076] Problem 6

problem number 1076

Added Feb. 23, 2019.

Problem Chapter 4.3.2.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) aeλxwx+bykwy=(cxn+s)w

Mathematica

ClearAll["Global`*"]; 
pde =  a*Exp[lambda*x]*D[w[x, y], x] + b*y^k*D[w[x, y], y] == (c*x^n + s)*w[x, y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c1(beλxaλy1kk1)exp(cxn(λx)nGamma(n+1,λx)+seλxaλ)}}

Maple

restart; 
pde := a*exp(lambda*x)*diff(w(x,y),x)+b*y^k*diff(w(x,y),y) =   (c*x^n+s)*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1(aλyk+1(k1)beλxaλ)ecxn(λx)n2WhittakerM(n2,n2+12,λx)eλx2(eλx1)(n+1)s(n+1)aλ

____________________________________________________________________________________

7.4.7.7 [1077] Problem 7

problem number 1077

Added Feb. 23, 2019.

Problem Chapter 4.3.2.7, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) aeλywx+bxkwy=(ceμx+s)w

Mathematica

ClearAll["Global`*"]; 
pde =  a*Exp[lambda*y]*D[w[x, y], x] + b*x^k*D[w[x, y], y] == (c*Exp[mu*x] + s)*w[x, y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c1(eλyλbxk+1ak+a)exp(1x(k+1)(eμK[1]c+s)aeλy(k+1)+bλ(K[1]k+1xk+1)dK[1])}}

Maple

restart; 
pde := a*exp(lambda*y)*diff(w(x,y),x)+b*x^k*diff(w(x,y),y) =   (c*exp(mu*x)+s)*w(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1(bλxk+1+(k+1)aeλy(k+1)bλ)ex(ce_aμ+s)(k+1)bλ_ak+1bλxk+1+(k+1)aeλyd_a

____________________________________________________________________________________