Added Feb. 7, 2019.
Problem 2.9.2.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + f(a x+b y + c) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + f[a*x + b*y + c]*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+ f(a*x+b*y+c)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (-b \left (\int _{}^{\frac {a x +b y}{b}}\frac {1}{b f \left (\textit {\_a} b +c \right )+a}d \textit {\_a} \right )+x \right )\]
____________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.9.2.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + f(\frac {y}{x}) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + f[y/x]*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+ f(y/x)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (\int _{}^{\frac {y}{x}}\frac {1}{-\textit {\_a} +f \left (\textit {\_a} \right )}d \textit {\_a} -\ln \left (x \right )\right )\]
____________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.9.2.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + \left ( f(y+a x^n+b) - a n x^{n-1} \right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (f[y + a*x^n + b] - a*n*x^(n - 1))*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+ (f(y+a*x^n+b) - a*n*x^(n-1))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (-x +\int _{\textit {\_b}}^{y}\frac {1}{f \left (a \,x^{n}+\textit {\_a} +b \right )}d \textit {\_a} \right )\]
____________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.9.2.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ x w_x + y f(x^n y^m) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = x*D[w[x, y], x] + y*f[x^n*y^m]*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := x*diff(w(x,y),x)+ y*f(x^n*y^m)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (\frac {m \left (\int _{\textit {\_b}}^{y}\frac {1}{\left (m f \left (\textit {\_a}^{m} x^{n}\right )+n \right ) \textit {\_a}}d \textit {\_a} \right )-\ln \left (x \right )}{m}\right )\]
____________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.9.2.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ y^{m-1} w_x + x^{n-1} f(a x^n+b y^m) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = y^(m - 1)*D[w[x, y], x] + x^(n - 1)*f[a*x^n + b*y^m]*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := y^(m-1)*diff(w(x,y),x)+ x^(n-1)*f(a*x^n+b*y^m)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
sol=()
____________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.9.2.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + e^{-\lambda x} f(e^{\lambda x} y) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + Exp[-(lambda*x)]*f[Exp[lambda*x]*y]*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+ exp(-lambda*x)*f(exp(lambda*x)*y)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (x -\left (\int _{}^{y \,{\mathrm e}^{\lambda x}}\frac {1}{\textit {\_a} \lambda +f \left (\textit {\_a} \right )}d \textit {\_a} \right )\right )\]
____________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.9.2.7 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + e^{\lambda y} f(e^{\lambda y} x) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + Exp[lambda*y]*f[Exp[lambda*y]*x]*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+ exp(lambda*y)*f(exp(lambda*y)*x)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (\frac {-\lambda \left (\int _{}^{\frac {\lambda y +\ln \left (x \right )}{\lambda }}\frac {1}{\lambda \,{\mathrm e}^{\textit {\_a} \lambda } f \left ({\mathrm e}^{\textit {\_a} \lambda }\right )+1}d \textit {\_a} \right )+\ln \left (x \right )}{\lambda }\right )\]
____________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.9.2.8 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + y f(e^{\alpha x} y^m) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + y*f[Exp[alpha*x]*y^m]*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+ y*f(exp(alpha*x)*y^m)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (\frac {m \left (\int _{\textit {\_b}}^{y}\frac {1}{\left (m f \left (\textit {\_a}^{m} {\mathrm e}^{\alpha x}\right )+\alpha \right ) \textit {\_a}}d \textit {\_a} \right )-x}{m}\right )\]
____________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.9.2.9 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ x w_x + f(x^n e^{\alpha y}) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = x*D[w[x, y], x] + f[x^n*Exp[alpha*y]]*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := x*diff(w(x,y),x)+ f(x^n*exp(alpha*y))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (\frac {\alpha \left (\int _{\textit {\_b}}^{y}\frac {1}{\alpha f \left (x^{n} {\mathrm e}^{\textit {\_a} \alpha }\right )+n}d \textit {\_a} \right )-\ln \left (x \right )}{\alpha }\right )\]
____________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.9.2.10 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + e^{\lambda x - \beta y} f(a e^{\lambda x} + b e^{\beta y}) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + Exp[lambda*x - beta*y]*f[a*Exp[lambda*x] + b*Exp[beta*y]]*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+ exp(lambda*x-beta*y)*f(a*exp(lambda*x)+b*exp(beta*y))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (\frac {a \,\lambda ^{2} \left (\int _{}^{\frac {-a \,{\mathrm e}^{\lambda x}-b \,{\mathrm e}^{\beta y}}{a \lambda }}\frac {1}{b \beta f \left (-\textit {\_a} a \lambda \right )+a \lambda }d \textit {\_a} \right )+{\mathrm e}^{\lambda x}}{\lambda }\right )\]
____________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.9.2.11 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + \left ( f\left (y+a e^{\lambda x}+b \right ) -a \lambda e^{\lambda x} \right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (f[y + a*Exp[lambda*x] + b] - a*lambda*Exp[lambda*x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+ (f(y+a*exp(lambda*x)+b)-a * lambda*exp(lambda*x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (-x +\int _{\textit {\_b}}^{y}\frac {1}{f \left (a \,{\mathrm e}^{\lambda x}+\textit {\_a} +b \right )}d \textit {\_a} \right )\]
____________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.9.2.12 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ \alpha x y w_x + \left ( \alpha f(x^n e^{\alpha y}) - n y \right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = alpha*x*y*D[w[x, y], x] + (alpha*f[x^n*Exp[alpha*y]] - n*y)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := alpha*x*y*diff(w(x,y),x)+ (alpha*f(x^n*exp(alpha*y)) - n*y)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
sol=()
____________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.9.2.13 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ m x(\ln y) w_x + \left ( y f(x^n y^m) - n y \ln y \right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = m*x*Log[y]*D[w[x, y], x] + (y*f[x^n*y^m] - n*y*Log[y])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := m*x*ln(y)*diff(w(x,y),x)+ (y*f(x^n*y^m) - n*y*ln[y])*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
sol=()
____________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.9.2.14 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + \left ( f(y+a \tan x) - a \tan ^2 x \right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (f[y + a*Tan[x]] - a*Tan[x]^2)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+ (f(y+a*tan(x)) - a*tan(x)^2)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (-x +\int _{}^{a \tan \left (x \right )+y}\frac {1}{a +f \left (\textit {\_a} \right )}d \textit {\_a} \right )\]
____________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.9.2.15 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ e^{\lambda x} w_x + f(\lambda x+\ln y) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = Exp[lambda*x]*D[w[x, y], x] + f[lambda*x + Log[y]]*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := exp(lambda*x)*diff(w(x,y),x)+ f(lambda*x+ln(y))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (x -\left (\int _{}^{y \,{\mathrm e}^{\lambda x}}\frac {1}{\textit {\_a} \lambda +f \left (\ln \left (\textit {\_a} \right )\right )}d \textit {\_a} \right )\right )\]
____________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.9.2.16 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + e^{\lambda y} f(\lambda y+\ln x) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + Exp[lambda*y]*f[lambda*y + Log[x]]*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+ exp(lambda*y)*f(lambda*y+ln(x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (\frac {-\lambda \left (\int _{}^{\frac {\lambda y +\ln \left (x \right )}{\lambda }}\frac {1}{\lambda \,{\mathrm e}^{\textit {\_a} \lambda } f \left (\textit {\_a} \lambda \right )+1}d \textit {\_a} \right )+\ln \left (x \right )}{\lambda }\right )\]
____________________________________________________________________________________