4.1.5 Finite domain (bar), Both ends nonhomogeneous BC

4.1.5.1 [216] both ends non-homogeneous BC (general case)
4.1.5.2 [217] non-homogeneous BC (special case)
4.1.5.3 [218] Articolo 8.4.1 (special case)
4.1.5.4 [219] With source that depends on space only (general case)
4.1.5.5 [220] With source that depends on space only (special case)
4.1.5.6 [221] With source that depends on space and time only (general case)
4.1.5.7 [222] Both ends depend on time (general case)
4.1.5.8 [223] Both ends depend on time (special case)
4.1.5.9 [224] both ends nonhomogeneous
4.1.5.10 [225] Haberman 8.2.1 (a) (general case)
4.1.5.11 [226] Haberman 8.2.1 (d) (general solution)
4.1.5.12 [227] Both ends depend on time with source that depends on space only (general solution)
4.1.5.13 [228] Both ends depend on time with source that depends on space only (special case)
4.1.5.14 [229] Both ends depend on time with source that depends on time and space (general solution)
4.1.5.15 [230] Both ends depend on time with source present (special case)
4.1.5.16 [231] Pinchover and Rubinstein 6.17
4.1.5.17 [232] nonhomogeneous BC
4.1.5.18 [233] Haberman 8.2.2. (a)
4.1.5.19 [234] Articolo 8.4.3

4.1.5.1 [216] both ends non-homogeneous BC (general case)

problem number 216

Added June 22, 2019

Solve the heat equation ut=kuxx For 0<x<L and t>0. The boundary conditions are u(0,t)=Au(L,t)=B

Initial condition is u(x,0)=f(x)

Mathematica

ClearAll["Global`*"]; 
pde =  D[u[x, t], t] == k*D[u[x, t], {x, 2}]; 
bc  = {u[0, t] == A, u[L, t] == B}; 
ic  = u[x, 0] == f[x]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, u[x, t], {x, t},Assumptions->{k>0,L>0,t>0}], 60*10]]; 
sol =  sol /. K[1] -> n;
 

{{u(x,t)n=12ekn2π2tL2(0L(A+(AB)xL+f(x))sin(nπxL)dx)sin(nπxL)L+x(BA)L+A}}

Maple

restart; 
pde :=  diff(u(x,t),t)=k*diff(u(x,t),x$2); 
ic  :=  u(x,0)=f(x); 
bc  :=  u(0,t)=A, u(L,t)=B; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,ic,bc],u(x,t)) assuming k>0,L>0,t>0),output='realtime'));
 

u(x,t)=AL2L(n=1(0L(BxLf(x)+(Lx)A)sin(πnxL)dx)eπ2kn2tL2sin(πnxL)L2)(AB)xL

Hand solution

Solve(1)ut=kuxxt>0,0<x<L BC areu(0,t)=Au(L,t)=B

Initial conditionsu(x,0)=f(x) Solution

Since boundary conditions are nonhomogeneous, then the first step is to reduce the problem to one with homogeneous B.C. to be able to use separation of variables (separation of variables can only be done on a PDE with homogeneous B.C.)

This is done by using steady state solution. Let the total solution be(2)u(x,t)=v(x,t)+r(x) Where v(x,t) is the transient solution which satisfies homogeneous version of the B.C. and r(x) is the steady state solution which do not depend on time and just needs to satisfy the nonhomogeneous BC. Since r(x) is the steady state solution, then the PDE becomes an ODE0=kr(x)r(0)=Ar(L)=B

This has the solution r(x)=c1x+c2. Using BC at x=0 leads to A=c2. Therefore the solution is r(x)=c1x+A. Using BC at x=L gives B=c1L+A or c1=BAL. Hencer(x)=(BAL)x+A Therefore (1) becomesu(x,t)=v(x,t)+(BAL)x+A Substituting the above back in the original PDE ut=kuxx givesvt=kvxxv(0)=0v(L)=0v(x,0)=F(x)=u(x,0)r(x)(3)=f(x)(BALx+A)

The above PDE was solved in problem 4.1.1.1 on page 405 and the solution is(4)v(x,t)=n=1(2L0LF(s)sin(λns)ds)ekλntsin(λnx)λn=(nπL)2n=1,2,3,

Substituting (3) into (4) givesv(x,t)=2Ln=1(0L(f(s)(BALs+A))sin(λns)ds)ekλntsin(λnx) From (2)u(x,t)=v(x,t)+r(x)=A+(BAL)x+2Ln=1(0L(f(s)(BALs+A))sin(λns)ds)ekλntsin(λnx)=A+(BAL)x+2Ln=1(0L(f(s)(BALs+A))sin(nπLs)ds)ek(nπL)2tsin(nπLx)

____________________________________________________________________________________

4.1.5.2 [217] non-homogeneous BC (special case)

problem number 217

Taken from Maple PDE help pages

Solve the heat equation ut=uxx For 0<x<1 and t>0. The boundary conditions are u(0,t)=20u(1,t)=50

Initial condition is u(x,0)=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[u[x, t], t] == D[u[x, t], {x, 2}]; 
bc  = {u[0, t] == 20, u[1, t] == 50}; 
ic  = u[x, 0] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, u[x, t], x, t], 60*10]]; 
sol =  sol /. K[1] -> n;
 

{{u(x,t)2n=1(2050(1)n)en2π2tsin(nπx)nπ+30x+20}}

Maple

restart; 
pde :=  diff(u(x,t),t)=diff(u(x,t),x$2); 
ic  :=  u(x,0)=0; 
bc  :=  u(0,t)=20, u(1,t)=50; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,ic,bc],u(x,t))),output='realtime'));
 

u(x,t)=30x+20(n=1(5(1)n2)eπ2n2tsin(πnx)πn)+20

Hand solution

The general solution to (1)ut=kuxxt>0,0<x<L BC areu(0,t)=Au(L,t)=B

Initial conditionsu(x,0)=f(x) Is given in problem 4.1.5.1 on page 698 asu(x,t)=A+(BAL)x+2Ln=1(0L(f(x)(BALx+A))sin(λnx)dx)ekλntsin(λnx) Where λn=(nπL)2,n=1,2,3,. Substituting A=20,B=50,L=1,k=1,f(x)=0 gives the solution asu(x,t)=20+30x+2n=1(01(30x+20)sin(nπx)dx)ekn2π2tsin(nπx) But 01(30x+20)sin(nπx)dx=50(1)n20nπ and the above becomesu(x,t)=20+30x+2n=1(50(1)n20nπ)ekn2π2tsin(nπx)=20+30x+n=1(100(1)n40nπ)ekn2π2tsin(nπx)

____________________________________________________________________________________

4.1.5.3 [218] Articolo 8.4.1 (special case)

problem number 218

Added December 20, 2018.

Example 8.4.1 from Partial differential equations and boundary value problems with Maple by George A. Articolo, 2nd ed.

Solve the heat equation for u(x,t) ut=kuxx For 0<x<1 and t>0. The boundary conditions are u(0,t)=10u(1,t)=20

Initial condition is u(x,0)=60x50x2+10 and k=120

Mathematica

ClearAll["Global`*"]; 
k = 1/20; 
pde =  D[u[x, t], t] == k*D[u[x, t], {x, 2}]; 
bc  = {u[0, t] == 10, u[1, t] == 20}; 
ic  = u[x, 0] == 60*x - 50*x^2 + 10; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, u[x, t], x, t], 60*10]]; 
sol =  sol /. K[1] -> n;
 

{{u(x,t)n=1200(1+(1)n)e120n2π2tsin(nπx)n3π3+10(x+1)}}

Maple

restart; 
k := 1/20; 
pde := diff(u(x,t),t)= k*diff(u(x,t),x$2); 
bc  := u(0, t) = 10, u(1, t) = 20; 
ic  := u(x, 0) = 60*x - 50*x^2 + 10; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol', pdsolve([pde, ic, bc], u(x, t))),output='realtime'));
 

u(x,t)=10x200(n=1((1)n1)eπ2n2t20sin(πnx)π3n3)+10

Hand solution

The general solution to (1)ut=kuxxt>0,0<x<L BC areu(0,t)=Au(L,t)=B

with Initial conditionsu(x,0)=f(x) Is given in problem 4.1.5.1 on page 698 asu(x,t)=A+(BAL)x+2Ln=1(0L(f(x)(BALx+A))sin(λnx)dx)ekλntsin(λnx) Where λn=(nπL)2,n=1,2,3,. Substituting A=10,B=20,L=1,k=120,f(x)=60x50x2+10 gives the solution asu(x,t)=10+10x+2n=1(01(60x50x2+10(10x+10))sin(nπxx)dx)e120n2π2tsin(nπxx)=10+10x+2n=1(01(50x50x2)sin(nπxx)dx)e120n2π2tsin(nπxx)

But 01(50x50x2)sin(nπxx)dx=100100(1)nn3π3 and the above becomesu(x,t)=10+10x+2n=1100(1(1)nn3π3)e120n2π2tsin(nπxx)=10+10xn=1200((1)n1n3π3)e120n2π2tsin(nπxx)

____________________________________________________________________________________

4.1.5.4 [219] With source that depends on space only (general case)

problem number 219

Added July 6,2019

Solve the heat equation for u(x,t) ut=kuxx+Q(x) For 0<x<L and t>0. The boundary conditions are u(0,t)=Au(1,t)=B

Initial condition is u(x,0)=f(x)

Mathematica

ClearAll["Global`*"]; 
pde =  D[u[x, t], t] == k*D[u[x, t], {x, 2}] + Q[x]; 
bc  = {u[0, t] == A, u[L, t] == B}; 
ic  = u[x, 0] == f[x]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, u[x, t], {x, t},Assumptions->{k>0,L>0}], 60*10]];
 

{{u(x,t)K[1]=12((1ekπ2tK[1]2L2)(0L2Q(x)sin(πxK[1]L)Ldx)L2kπ2K[1]2+ekπ2tK[1]2L20L2(Bx+A(xL)+Lf(x))sin(πxK[1]L)L3/2dx)sin(πxK[1]L)L+x(BA)L+A}}

Maple

restart; 
pde := diff(u(x,t),t)= k*diff(u(x,t),x$2)+Q(x); 
bc  := u(0, t) = A, u(L, t) = B; 
ic  := u(x, 0) = f(x); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol', pdsolve([pde, ic, bc], u(x, t)) assuming L>0,k>0),output='realtime'));
 

u(x,t)=2Lk(n=1(0L(L(0_a0_z1Q(_z1)d_z1d_z1)_a(0L0_z1Q(_z1)d_z1d_z1)+(AL+Lf(_a)+(AB)_a)k)sin(π_anL)d_a)eπ2kn2tL2sin(πnxL)L2k)L(0x0_aQ(_a)d_ad_a)+x(0L0_aQ(_a)d_ad_a)+(AL(AB)x)kLk

Hand solution

Solving(1)ut=kuxx+Q(x) With initial conditions u(x,0)=f(x) and boundary conditions u(0,t)=A,u(L,t)=B with 0<x<L,t>0

Since boundary conditions are nonhomogeneous, the first step is to reduce the problem to one with homogeneous B.C. to be able to use separation of variables. This is done by using steady state solution. Let the total solution be(2)u(x,t)=v(x,t)+r(x) Where v(x,t) is the transient solution which satisfies the homogeneous B.C. and r(x) is the steady state solution which do not depend on time and just needs to satisfy the nonhomogeneous BC. Since r(x) is the steady state solution, then the PDE becomes an ODE0=kr(x)r(0)=Ar(L)=B

This has the solution r(x)=c1x+c2. Using BC at x=0 leads to A=c2. Therefore the solution is r(x)=c1x+A. Using BC at x=L gives B=c1L+A or c1=BAL. Hence(3)r(x)=(BAL)x+A Substituting (2) back in the original PDE ut=kuxx+Q(x) gives(4)vt=kvxx+Q(x)v(0,t)=0v(L,t)=0

The initial conditions arev(x,0)=F(x)=u(x,0)r(x)=f(x)((BAL)x+A)

The general solution to (4) was solved in 4.1.1.11 on page 453 and the solution isv(x,t)=n=1ekλntΦn(x)(2L0LF(s)Φn(s)ds)+n=1ekλntΦn(x)(0t2Lekλnτ(0LQ(s)Φn(s)ds)dτ)Φn(x)=sin(λnx)λn=(nπL)2n=1,2,3,

But F(x)=f(x)((BAL)x+A) in this case, hence the solution becomesv(x,t)=n=1ek(nπL)2tsin(nπLx)(2L0L(f(s)((BAL)s+A))sin(nπLs)ds)+n=1ek(nπL)2tsin(nπLx)(0t2Lek(nπL)2τ(0LQ(s)sin(nπLs)ds)dτ)

Since u(x,t)=v(x,t)+r(x), then the final solution isu(x,t)=(BAL)x+A+n=1ek(nπL)2tsin(nπLx)(2L0L(f(s)((BAL)s+A))sin(nπLs)ds)+n=1ek(nπL)2tsin(nπLx)(0t2Lek(nπL)2τ(0LQ(s)sin(nπLs)ds)dτ)

____________________________________________________________________________________

4.1.5.5 [220] With source that depends on space only (special case)

problem number 220

Added July 6,2019

Solve the heat equation for u(x,t) ut=kuxx+Q(x) For 0<x<L and t>0. The boundary conditions are u(0,t)=Au(1,t)=B

Initial condition is u(x,0)=f(x), Using the following values A=20B=50f(x)=602xL=30k=110Q(x)=x10

Mathematica

ClearAll["Global`*"]; 
A=20; B=50; f=60-2*x; L=30; k=1/10; Q=x/10; 
pde =  D[u[x, t], t] == k*D[u[x, t], {x, 2}] + Q; 
bc  = {u[0, t] == A, u[L, t] == B}; 
ic  = u[x, 0] == f; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, u[x, t], x, t], 60*10]];
 

{{u(x,t)K[1]=120eπ2tK[1]29000(((4+5(1)K[1])π2K[1]2)2700(1)K[1]+2700(1)K[1]eπ2tK[1]29000)sin(130πxK[1])π3K[1]3+x+20}}

Maple

restart; 
A:=20; 
B:=50; 
f:=60-2*x; 
L:=30; 
k:=1/10; 
Q:=x/10; 
pde := diff(u(x,t),t)= k*diff(u(x,t),x$2)+Q; 
bc  := u(0, t) = A, u(L, t) = B; 
ic  := u(x, 0) = f; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol', pdsolve([pde, ic, bc], u(x, t))),output='realtime'));
 

u(x,t)=x36+151x+20(n=1(5π2n2(1)n+4π2n2+2700(1)n)eπ2n2t9000sin(πnx30)π3n3)+20

Hand solution

Solving(1)ut=kvxx+Q(x)u(0,t)=Au(L,t)=Bu(x,0)=f(x)

Where A=20,B=50,f(x)=602x,Q(x)=x10,k=110,L=30.

The general solution to above PDE was solved in 4.1.5.4 on page 708 and the solution isu(x,t)=(BAL)x+A+n=1ek(nπL)2tsin(nπLx)(2L0L(f(s)((BAL)s+A))sin(nπLs)ds)+n=1ek(nπL)2tsin(nπLx)(0t2Lek(nπL)2τ(0LQ(s)sin(nπLs)ds)dτ)

Replacing the specific values, the solution becomesu(x,t)=x+20+n=1ek(nπL)2tsin(nπLx)(230030(602s(s+20))sin(nπ30s)ds)+n=1ek(nπL)2tsin(nπLx)(0t230ek(nπL)2τ(030s10sin(nπ30s)ds)dτ)

Oru(x,t)=x+20+115n=1ek(nπL)2tsin(nπLx)(030(403s)sin(nπ30s)ds)+1150n=1ek(nπL)2tsin(nπLx)(0tek(nπL)2τ(030ssin(nπ30s)ds)dτ)

But 030(403s)sin(nπ30s)ds=1500(1)n+1200nπ and 030ssin(nπ30s)ds=900(1)nnπ, hence the above becomesu(x,t)=x+20+115n=1ek(nπL)2tsin(nπLx)(1500(1)n+1200nπ)+1150n=1ek(nπL)2tsin(nπLx)(0tek(nπL)2τ(900(1)nnπ)dτ)

Oru(x,t)=x+20+30015n=1(5(1)n+4nπ)ek(nπL)2tsin(nπLx)900150n=1(1)nnπek(nπL)2tsin(nπLx)(0tek(nπL)2τdτ)

But 0tek(nπL)2τdτ=[ek(nπL)2τk(nπL)2]0t=ek(nπL)2t1k(nπL)2, therefore the above becomesu(x,t)=x+20+30015n=1(5(1)n+4nπ)ek(nπL)2tsin(nπLx)900150n=1(1)nnπek(nπL)2tsin(nπLx)(ek(nπL)2t1k(nπL)2)

Oru(x,t)=x+20+20n=1(5(1)n+4nπ)ek(nπL)2tsin(nπLx)900150n=1(1)nnπk(nπL)2sin(nπLx)(1ek(nπL)2t)

Finally replacing the remaining variables in the above for L,k givesu(x,t)=x+20+20n=1(5(1)n+4nπ)e110(nπ30)2tsin(nπ30x)900150n=19000(1)nn3π3sin(nπ30x)(1e110(nπ30)2t)

Oru(x,t)=x+20+20n=1(5(1)n+4nπ)e110(nπ30)2tsin(nπ30x)54000n=1(1)nn3π3sin(nπ30x)(1e110(nπ30)2t)

Oru(x,t)=(x+20)+20n=1(5(1)n+4nπ)eπ2n29000tsin(nπ30x)54000n=1(1)nn3π3sin(nπ30x)(1eπ2n29000t) Animation is below

Source code used for the above

____________________________________________________________________________________

4.1.5.6 [221] With source that depends on space and time only (general case)

problem number 221

Added July 6,2019

Solve the heat equation for u(x,t) ut=kuxx+Q(x,t) For 0<x<L and t>0. The boundary conditions are u(0,t)=Au(1,t)=B

Initial condition is u(x,0)=f(x)

Mathematica

ClearAll["Global`*"]; 
pde =  D[u[x, t], t] == k*D[u[x, t], {x, 2}] + Q[x,t]; 
bc  = {u[0, t] == A, u[L, t] == B}; 
ic  = u[x, 0] == f[x]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, u[x, t], {x, t},Assumptions->{k>0,L>0}], 60*10]];
 

{{u(x,t)K[1]=12(0tekπ2K[1]2(tK[2])L2Integrate[2Q(x,K[2])sin(πxK[1]L)L,{x,0,L},Assumptionsk>0L>0]dK[2]+ekπ2tK[1]2L20L2(AL+f(x)L+AxBx)sin(πxK[1]L)L3/2dx)sin(πxK[1]L)L+x(BA)L+A}}

Maple

restart; 
pde := diff(u(x,t),t)= k*diff(u(x,t),x$2)+Q(x,t); 
bc  := u(0, t) = A, u(L, t) = B; 
ic  := u(x, 0) = f(x); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol', pdsolve([pde, ic, bc], u(x, t)) assuming L>0,k>0),output='realtime'));
 

u(x,t)=AL+L(0t(n=12(0LQ(x,τ)sin(πnxL)dx)eπ2(tτ)kn2L2sin(πnxL)L)dτ)2L(n=1(0L(ALLf(τ)+(A+B)τ)sin(πnτL)dτ)eπ2kn2tL2sin(πnxL)L2)(AB)xL

Hand solution

Solving(1)ut=kuxx+Q(x,t) With initial conditions u(x,0)=f(x) and boundary conditions u(0,t)=A,u(L,t)=B with 0<x<L,t>0

Since boundary conditions are nonhomogeneous, the first step is to reduce the problem to one with homogeneous B.C. to be able to use separation of variables. This is done by using steady state solution. Let the total solution be(2)u(x,t)=v(x,t)+r(x) Where v(x,t) is the transient solution which satisfies the homogeneous B.C. and r(x) is the steady state solution which do not depend on time and just needs to satisfy the nonhomogeneous BC. Since r(x) is the steady state solution, then the PDE becomes an ODE0=kr(x)r(0)=Ar(L)=B

This has the solution r(x)=c1x+c2. Using BC at x=0 leads to A=c2. Therefore the solution is r(x)=c1x+A. Using BC at x=L gives B=c1L+A or c1=BAL. Hence(3)r(x)=(BAL)x+A Substituting (2) back in the original PDE ut=kuxx+Q(x,t) gives(4)vt=kvxx+Q(x,t)v(0,t)=0v(L,t)=0

The initial conditions arev(x,0)=F(x)=u(x,0)r(x)=f(x)((BAL)x+A)

The general solution to (4) was solved in 4.1.6.4 on page 806 and the solution is

v(x,t)=n=1ekλntΦn(x)(2L0Lf(s)Φn(s)ds)+n=1ekλntΦn(x)(0t2Lekλnτ(0LQ(s,τ)Φn(s)ds)dτ)Φn(x)=sin(λnx)λn=(nπL)2n=1,2,3,

But F(x)=f(x)((BAL)x+A) in this case, hence the solution becomesv(x,t)=n=1ek(nπL)2tsin(nπLx)(2L0L(f(s)((BAL)s+A))sin(nπLs)ds)+n=1ek(nπL)2tsin(nπLx)(0t2Lek(nπL)2τ(0LQ(s,τ)sin(nπLs)ds)dτ)

Since u(x,t)=v(x,t)+r(x), then the final solution isu(x,t)=(BAL)x+A+n=1ek(nπL)2tsin(nπLx)(2L0L(f(s)((BAL)s+A))sin(nπLs)ds)+n=1ek(nπL)2tsin(nπLx)(0t2Lek(nπL)2τ(0LQ(s,τ)sin(nπLs)ds)dτ)

____________________________________________________________________________________

4.1.5.7 [222] Both ends depend on time (general case)

problem number 222

Added June 23, 2019

Solve the heat equation for u(x,t) ut=kuxx For 0<x<L and t>0. The boundary conditions are u(0,t)=A(t)u(L,t)=B(t)

Initial condition is u(x,0)=f(x)

Mathematica

ClearAll["Global`*"]; 
pde =  D[u[x, t], t] == k*D[u[x, t], {x, 2}]; 
bc  = {u[0, t] == A[t], u[L, t] == B[t]}; 
ic  = u[x, 0] == f[x]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, u[x, t], {x, t},Assumptions->{k>0,L>0}], 60*10]];
 

{{u(x,t)K[1]=12(ekπ2tK[1]2L20L2(LA(0)+xA(0)xB(0)+Lf(x))sin(πxK[1]L)L3/2dx+0t2ekπ2K[1]2(tK[2])L2L((1)K[1]B(K[2])A(K[2]))πK[1]dK[2])sin(πxK[1]L)L+x(B(t)A(t))L+A(t)}}

Maple

restart; 
pde := diff(u(x,t),t)= k*diff(u(x,t),x$2); 
bc  := u(0, t) = A(t), u(L, t) = B(t); 
ic  := u(x, 0) = f(x); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol', pdsolve([pde, ic, bc], u(x, t)) assuming L>0,k>0),output='realtime'));
 

u(x,t)=L(0t(n=1(2((1)n(ddτB(τ))+ddτA(τ))eπ2(tτ)kn2L2sin(πnxL)πn))dτ)+L(n=12(0L(Lf(x)B(0)x+A(0)(L+x))sin(πnxL)Ldx)eπ2kn2tL2sin(πnxL)L)+xB(t)+(Lx)A(t)L

Hand solution

(1)ut=kuxxu(0,t)=A(t)u(L,t)=B(t)u(x,0)=f(x)

Since boundary conditions are nonhomogeneous, the first step is to reduce the problem to one with homogeneous B.C. to be able to use separation of variables. This is done by using a reference solution r(x,t) which only needs to satisfy the B.C. Let the total solution be(2)u(x,t)=v(x,t)+r(x,t) Where v(x,t) is the transient solution which satisfies the homogeneous B.C. We see thatr(x,t)=A(t)+B(t)A(t)Lx(3)=A(t)(LxL)+B(t)Lx

Satisfies the nonhomogeneous. Substituting (2) back into the original PDE (1) givest(v(x,t)+r(x,t))=k2x2(v(x,t)+r(x,t))vt(x,t)+rt(x,t)=kvxx(x,t)+krxx(x,t)

But rxx(x,t)=0 and rt=A(t)(LxL)+B(t)Lx and the above PDE becomesvt(x,t)=kvxx(x,t)rt(x,t) Let Q(x,t)=rt(x,t)=(A(t)(LxL)+B(t)Lx)

Therefore the problem has been transformed tovt=kvxx+Q(x,t)v(0,t)=0v(L,t)=0v(0,x)=F(x)=u(x,0)r(x,0)=f(x)(A(0)(LxL)+B(0)Lx)

The above problem was solved in 4.1.6.4 on page 806. The solution is(4)v(x,t)=n=1[(2L0LF(s)Φn(s)ds)ekλnt+ekλnt0t2Lekλnτ(0LQ(s,τ)Φn(s)dx)dτ]Φn(x) Where Φn(x)=sin(λnx)λn=(nπL)2n=1,2,3,

Hence (4) becomes

v(x,t)=2Ln=1ekλntsin(nπLx)(0LF(s)sin(nπLs)ds)+2Ln=1ekλntsin(nπLx)0tekλnτ(0LQ(s,τ)sin(nπLs)dx)dτ

Since u(x,t)=r(x,t)+v(x,t) then the final solution becomes

u(x,t)=(A(t)(LxL)+B(t)Lx)+2Ln=1ekλntsin(nπLx)(0LF(s)sin(nπLs)ds)+2Ln=1ekλntsin(nπLx)0tekλnτ(0LQ(s,τ)sin(nπLs)ds)dτ

Or

u(x,t)=(A(t)(LxL)+B(t)Lx)+2Ln=1ek(nπL)2tsin(nπLx)(0L(f(s)(A(0)(LsL)+B(0)Ls))sin(nπLs)ds)+2Ln=1ek(nπL)2tsin(nπLx)(0tek(nπL)2τ(0LQ(s,τ)sin(nπLs)ds)dτ)

Or

u(x,t)=(A(t)(LxL)+B(t)Lx)+2L2n=1ek(nπL)2tsin(nπLx)(0L(f(s)L(A(0)(Ls)+B(0)s))sin(nπLs)ds)+2Ln=1ek(nπL)2tsin(nπLx)(0tek(nπL)2τ(0LQ(s,τ)sin(nπLs)ds)dτ)

Or, since here Q(x,t)=(A(t)(LxL)+B(t)Lx) the above becomesu(x,t)=(A(t)(LxL)+B(t)Lx)+2L2n=1ek(nπL)2tsin(nπLx)(0L(f(s)L(A(0)(Ls)+B(0)s))sin(nπLs)ds)+2Ln=1ek(nπL)2tsin(nπLx)(0tek(nπL)2τ(0L(B(τ)LsA(τ)(LsL))sin(nπLs)ds)dτ)

Or

u(x,t)=(A(t)(LxL)+B(t)Lx)+2L2n=1ek(nπL)2tsin(nπLx)(0Lf(s)Lsin(nπLs)A(0)(Ls)sin(nπLs)B(0)ssin(nπLs)ds)+2Ln=1ek(nπL)2tsin(nπLx)(0tek(nπL)2τ(0LB(τ)Lssin(nπLs)A(τ)(LsL)sin(nπLs)ds)dτ)

Or

(5)u(x,t)=(A(t)(LxL)+B(t)Lx)+2L2n=1ek(nπL)2tsin(nπLx)(0Lf(s)Lsin(nπLs)A(0)(Ls)sin(nπLs)B(0)ssin(nπLs)ds)+2L2n=1ek(nπL)2tsin(nπLx)(0tek(nπL)2τ(0LB(τ)ssin(nπLs)A(τ)(Ls)sin(nπLs)ds)dτ)

But 0Lf(s)Lsin(nπLs)A(0)(Ls)sin(nπLs)B(0)ssin(nπLs)ds=L0Lf(s)sin(nπLs)dsA(0)0L(Ls)sin(nπLs)dsB(0)0Lssin(nπLs)ds

Since 0L(Ls)sin(nπLs)ds=L2nπ and 0Lssin(nπLs)dx=L2(1)nnπ, then the above becomes0Lf(s)sin(nπLs)A(0)(LsL)sin(nπLs)B(0)Lssin(nπLs)ds=L0Lf(s)sin(nπLs)dsA(0)L2nπ+B(0)L2(1)nnπ

And (7)0LB(τ)ssin(nπLs)A(τ)(Ls)sin(nπLs)ds=A(τ)0L(Ls)sin(nπLs)ds+B(τ)0Lssin(nπLs)ds=A(τ)L2nπ+B(τ)L2(1)nnπ

Substituting (6,7) back into (5) gives

u(x,t)=(A(t)(LxL)+B(t)Lx)+2L2n=1ek(nπL)2tsin(nπLx)(L0Lf(s)sin(nπLs)dsA(0)L2nπ+B(0)L2(1)nnπ)2L2n=1ek(nπL)2tsin(nπLx)(0tek(nπL)2τ(B(τ)L2(1)nnπ+A(τ)L2nπ)dτ)

Or

u(x,t)=(A(t)(LxL)+B(t)Lx)+2L2n=1ek(nπL)2tsin(nπLx)(0Lf(s)Lsin(nπLs)dsA(0)L2nπ+B(0)L2(1)nnπ)2n=1ek(nπL)2tsin(nπLx)(1nπ0tek(nπL)2τ((1)nB(τ)+A(τ))dτ)

____________________________________________________________________________________

4.1.5.8 [223] Both ends depend on time (special case)

problem number 223

Added June 26, 2019

Solve the heat equation for u(x,t) ut=kuxx For 0<x<L and t>0. The boundary conditions are u(0,t)=A(t)u(L,t)=B(t)

Initial condition is u(x,0)=f(x) using the following values L=2k=110f(x)=xA(t)=sin(t)B(t)=2cos(t)

Mathematica

ClearAll["Global`*"]; 
f=x; 
L=2; 
k=1/10; 
A=Sin[t]; 
B=2*Cos[t]; 
pde =  D[u[x, t], t] == k*D[u[x, t], {x, 2}]; 
bc  = {u[0, t] == A, u[L, t] == B}; 
ic  = u[x, 0] == f; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, u[x, t], {x, t}], 60*10]];
 

{{u(x,t)K[1]=180(e140π2tK[1]2π2K[1]280(1)K[1]e140π2tK[1]2+cos(t)(80(1)K[1]π2K[1]2)2((1)K[1]π2K[1]2+20)sin(t))sin(12πxK[1])πK[1](π4K[1]4+1600)12xsin(t)+xcos(t)+sin(t)}}

Maple

restart; 
f:=x; 
L:=2; 
k:=1/10; 
A:=sin(t); 
B:=2*cos(t); 
pde := diff(u(x,t),t)= k*diff(u(x,t),x$2); 
bc  := u(0, t) = A, u(L, t) = B; 
ic  := u(x, 0) = f; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol', pdsolve([pde, ic, bc], u(x, t)) ),output='realtime'));
 

u(x,t)=xcos(t)xsin(t)280(n=1(π2n2cos(t)+(2π2n2sin(t)80cos(t))(1)n+(π2n2+80(1)n)eπ2n2t40+40sin(t))sin(πnx2)π(π4n4+1600)n)+sin(t)

Hand solution

The basic solution for this type of PDE was already given in problem 4.1.5.7 on page 726 as

u(x,t)=(A(t)(LxL)+B(t)Lx)+2L2n=1ek(nπL)2tsin(nπLx)(0Lf(s)Lsin(nπLs)dsA(0)L2nπ+B(0)L2(1)nnπ)2n=1ek(nπL)2tsin(nπLx)(1nπ0tek(nπL)2τ((1)nB(τ)+A(τ))dτ)

In this problem we have L=2k=110f(x)=xA(t)=sin(t)B(t)=2cos(t)

This is animation of the above solution using these specific values for 20 seconds. (Animation will only show in the HTML version)

Source code used for the above

____________________________________________________________________________________

4.1.5.9 [224] both ends nonhomogeneous

problem number 224

Added January 18, 2019.

Solve the heat equation for u(x,t) ut=uxx For 0<x<π and t>0. The boundary conditions are ux(0,t)=1ux(1,t)=1

Initial condition is u(x,0)=sin(x)

Mathematica

ClearAll["Global`*"]; 
pde =  D[u[x, t], t] == D[u[x, t], {x, 2}] + (x - (1*x^2)/Pi); 
ic  = u[x, 0] == Sin[x]; 
bc  = {Derivative[1, 0][u][0, t] == 1, Derivative[1, 0][u][Pi, t] == -1}; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, u[x, t], {x, t}], 60*10]];
 

{{u(x,t)K[1]=1etK[1]2cos(xK[1])(2πK[1]4({0K[1]=1(1+(1)K[1])2πK[1]2(K[1]21)True)2(1+(1)K[1])(1+etK[1]2))πK[1]42t+x22π+16π(t1)+x}}

Maple

restart; 
pde := diff(u(x, t), t) = diff(u(x, t), x$2): 
ic  := u(x, 0) = sin(x): 
bc  := eval(diff(u(x,t),x),x=0)=1,  eval( diff(u(x,t),x),x=Pi)=-1: 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol', pdsolve({pde, ic, bc}, u(x, t))),output='realtime'));
 

u(x,t)=x2π2tπ+x+n=2(2((1)n+1)cos(nx)en2t(n21)πn2)+2π26π

Hand solution

Since the boundary conditions are not homogeneous, we can’t use separation of variables. Let the solution  be

u=v(x,t)+r(x) Where v(x,t) is the solution to vt=vxx and homogenous B.C. vx(0,t)=0,vx(π,t)=0 and r(x) is any reference solution which only needs to satisfy the nonhomogeneous boundary conditions: r(0)=1,r(π)=1. By guessing, let r(x)=Ax+Bx2. Let see if this satisfies the boundary conditions. r=A+2Bx. At x=0 this implies 1=A. Hence r=x+Bx2. Now r=1+2Bx. At x=π this gives 1=1+2Bπ or B=1π. Therefore r(x)=x1πx2 Substituting u=v(x,t)+r(x) into the PDE ut=uxx and noting that r(x)=2π gives(1)vt=vxx2π PDE (1) is now solved using eigenfunction expansion. We need to find eigenfunctions and eigenvalues of vt=vxx with vx(0,t)=0,vx(π,t)=0. This is known PDE and have eigenfunctions and eigenvalues as follows. For zero eigenvalue, the eigenfunction is an arbitrary constant. Say β. let β=1 since scale is not important.Φ0(x)=1 And for n=1,2,3, Φn(x)=cos(λnx)=cos(nx)

with eigenvalues λn=n2 for n=1,2,3,. Now we can eigenfunction expansion and assume the solution to (1) is (2)v(x,t)=n=0An(t)Φn(x) Plugging this into the PDE (1) givesn=0An(t)Φn(x)=n=0An(t)Φn(x)2π But Φn(x)=λnΦn(x) and the above simplifies ton=0An(t)Φn(x)=n=0An(t)λnΦn(x)2π Since eigenfunctions are complete, we can expand 2π using them and the above becomesn=0An(t)Φn(x)=n=0An(t)λnΦn(x)n=0CnΦn(x)An(t)Φn(x)+An(t)λnΦn(x)=CnΦn(x)(3)An(t)+An(t)λn=Cn

To find Cnn=0CnΦn(x)=2π For n=0C0Φ0(x)=2π But Φ0(x)=1, hence C0=2π All other Cm  for m>0 are zero. Hence (3) becomes, for n=0 (since λ0=0)A0(t)=2πA0(t)=2πt+B0

Where B0 is integration constant. For n>0 (3) becomesAn(t)+An(t)n2=0 This has the solutionAn(t)=Bnen2t Where Bn is constant of integration. Hence from (2)v(x,t)=n=0An(t)Φn(x)=A0(t)+n=1An(t)Φn(x)=2πt+B0+n=1Bnen2tcos(nx)

Since u=v(x,t)+r(x) then the solution becomes(4)u(x,t)=(x1πx2)2πt+B0+n=1Bnen2tcos(nx) At t=0(5)sin(x)=(x1πx2)+B0+n=1Bncos(nx) case n=00πsin(x)cos(λ0x)dx=0π(x1πx2)cos(λ0x)dx+0πB0cos(λ0x)dx But λ0=0 hence0πsin(x)dx=0π(x1πx2)dx+0πB0dx2=π26+B0πB0=2ππ6

For n>0, Multiplying both sides of (5) by cos(mx) and integrating0πsin(x)cos(mx)dx=0π(x1πx2)cos(mx)dx+n=1Bn0πcos(nx)cos(mx)dx For m=10=0+B1π2B1=0

For m>11+(1)mm2(1+m2)=π2BmBm=2π(1m2(1)m+1m21)

Hence solution (4) becomesu(x,t)=(x1πx2)2πtπ6+2π+n=1Bnen2tcos(nx)u(x,t)=(x1πx2)2πtπ6+2π+n=22π(1n2(1)n+1n21)en2tcos(nx)

____________________________________________________________________________________

4.1.5.10 [225] Haberman 8.2.1 (a) (general case)

problem number 225

Added Nov 27, 2018

This is problem 8.2.1 part(a) from Richard Haberman applied partial differential equations 5th edition.

Solve the heat equation

ut=k2ux2

For 0<x<L and t>0. The boundary conditions are u(0,t)=Aux(L,t)=B

Initial condition is u(x,0)=f(x)

Mathematica

ClearAll["Global`*"]; 
pde =  D[u[x, t], t] == k*D[u[x, t], {x, 2}]; 
bc  = {u[0, t] == A, Derivative[1, 0][u][L, t] == B}; 
ic  = u[x, 0] == f[x]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, u[x, t], x, t, Assumptions -> L > 0], 60*10]];
 

{{u(x,t)K[1]=12ekπ2t(12K[1])24L2(0L2(A+Bxf(x))sin(πx(2K[1]1)2L)Ldx)sin(πx(2K[1]1)2L)L+A+Bx}}

Maple

restart; 
interface(showassumed=0); 
pde :=  diff(u(x,t),t)=k*diff(u(x,t),x$2); 
ic  :=  u(x,0)=f(x); 
bc  := u(0,t)=A, eval( diff(u(x,t),x),x=L)=B; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,ic,bc],u(x,t)) assuming L>0),output='realtime'));
 

u(x,t)=Bx+A2(n=0(0L(Bx+Af(x))sin((2n+1)πx2L)dx)eπ2(2n+1)2kt4L2sin((2n+1)πx2L)L)

Hand solution

Let (1)u(x,t)=v(x,t)+uE(x) We can look for uE(x) which is the steady state solution that satisfies the non-homogenous boundary conditions. In (1) v(x,t) satisfies the PDE itself but with homogenous boundary conditions. The first step is to find uE(x). We use the equilibrium solution in this case. At equilibrium uE(x,t)t=0 and hence the solution is given d2uEx2=0 or uE(x)=c1x+c2 At x=0,uE(x)=A, Hence c2=A And solution becomes uE(x)=c1x+A. at x=L,uE(x)x=c1=B, ThereforeuE(x)=Bx+A Now we plug-in (1) into the original PDE, this givesv(x,t)t=k(2v(x,t)x+2uE(x)x) But 2uE(x)x=0, hence we need to solve v(x,t)t=k2v(x,t)x for v(x,t)=u(x,t)uE(x) with homogenous boundary conditions v(0,t)=0,v(L,t)t=0 and initial conditions v(x,0)=u(x,0)uE(x)=f(x)(Bx+A)

This PDE we already solved before and we know that it has the following solutionv(x,t)=n=1,3,5,bnsin(λnx)ekλnt(2)λn=(nπ2L)2n=1,3,5,

With bn found from orthogonality using initial conditions v(x,0)=f(x)(Bx+A)v(x,0)=n=1,3,5,bnsin(λnx)0L(f(x)(Bx+A))sin(λmx)dx=0Ln=1,3,5,bnsin(λnx)sin(λmx)dx0L(f(x)(Bx+A))sin(λmx)dx=bmL2

Hence(3)bn=2L0L(f(x)(Bx+A))sin(λnx)dxn=1,3,5, Therefore, from (1) the solution isu(x,t)=n=1,3,5,bnsin(λnx)ekλnt+Bx+AuE(x)=Bx+A+n=1,3,5,(2L0L(f(x)(Bx+A))sin(nπLx)dx)sin(nπLx)ek(nπL)2t

Or

u(x,t)=Bx+A+n=0(2L0L(f(x)(Bx+A))sin((2n+1)π2Lx)dx)sin((2n+1)π2Lx)ek((2n+1)π2L)2t

____________________________________________________________________________________

4.1.5.11 [226] Haberman 8.2.1 (d) (general solution)

problem number 226

This is problem 8.2.1 part(d) from Richard Haberman applied partial differential equations 5th edition.

Solve the heat equation ut=k2ux2+k For 0<x<1 and t>0. The boundary conditions are u(0,t)=Au(L,t)=B

Initial condition is u(x,0)=f(x)

Mathematica

ClearAll["Global`*"]; 
pde =  D[u[x, t], t] == k*D[u[x, t], {x, 2}] + k; 
bc  = {u[0, t] == A0, u[L0, t] == B0}; 
ic  = u[x, 0] == f[x]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, u[x, t], x, t], 60*10]];
 

{{u(x,t)K[1]=1ekπ2tK[1]2L02(2(1+(1)K[1])(1+ekπ2tK[1]2L02)L0221L0π3(0L02(1L0)3/2(A0L0+f(x)L0+A0xB0x)sin(πxK[1]L0)dx)K[1]3)sin(πxK[1]L0)π3K[1]3+x(B0A0)L0+A0}}

Maple

restart; 
interface(showassumed=0); 
pde :=  diff(u(x,t),t)=k*diff(u(x,t),x$2)+k; 
ic  :=  u(x,0)=f(x); 
bc  :=  u(0,t)=A, u(L,t)=B; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,ic,bc],u(x,t))),output='realtime'));
 

u(x,t)=x22+A+n=1((0L2(L2x2Lf(x)+(x22+A)L(AB)x)sin(πnxL)dx)eπ2kn2tL2sin(πnxL)L2)+(L22A+2B)x2L

Hand solution

Let (1)u(x,t)=v(x,t)+uE(x) Where uE(x) is the equilibrium solution which needs to satisfy only the nonhomogeneous B.C. And v(x,t) is transient solution to heat PDE with homogeneous B.C.

At equilibrium, ut=kuxx+Q(x) becomes0=kuE+Q(x)=kuE+k=k(uE+1)

HenceuE=1 The solution to this ODE is uE=c1x+c212x2 At x=0, the above givesA=c2 And at x=LB=c1L+A12L2c1=BA+12L2L=BLAL+12L

Hence uE=(BLAL+12L)x+A12x2 Hence from (1)(1A)u(x,t)=v(x,t)+uE=v(x,t)+(BLAL+12L)x+A12x2

Substituting this in ut=kuxx+k givesvt=k(vxx1)+k(2)=kvxx

We need to solve the above for v(x,t), but with homogeneous B.C. v(0,t)=0,v(L,t)=0. The eigenvalues for the homogeneous PDE vt=kvxx with these boundary conditions is known to be λn=(nπL)2, for n=1,2, and the corresponding eigenfunctions are Xn(x)=sin(λnx). Now, using eigenfunction expansion, let(3)v(x,t)=n=1bn(t)Xn(x) Substituting (3) into (2) givesn=1bn(t)Xn(x)=kn=1bn(t)Xn(x) But Xn(x)=λnXn(x), therefore the above becomesn=1bn(t)Xn(x)+kn=1λnbn(t)Xn(x)=0 Since the above is true for each n and since eigenfunctions can not be zero, the above simplifies to(4)bn(t)+kλnbn(t)=0 This is linear in b(t). The solution using integrating factor isbn(t)=b0(0)ek(nπL)2t Therefore (3) becomesv(x,t)=n=1bn(t)Xn(x)=n=1b0(0)ek(nπL)2tsin(nπLx)

And from (1)u(x,t)=v(x,t)+uE(x)(5)=(BLAL+12L)x+A12x2uE+n=1b0(0)ek(nπL)2tsin(nπLx)

At t=0 the above becomesf(x)=BxLAxL+12Lx+A12x2+n=1b0(0)sin(nπLx) For n>0, and applying orthogonality0Lf(x)sin(nπLx)dx=0L(BxLAxL+12Lx+A12x2)sin(nπLx)dx+0Lb0(0)sin2(nπLx)dx Hence0L(f(x)(BxLAxL+12Lx+A12x2))sin(nπLx)dx=L2b0(0) Thereforeb0(0)=2L0L(f(x)(BxLAxL+12Lx+A12x2))sin(nπLx)dx Substituting the above in (5) givesu(x,t)=(BxLAxL+12Lx+A12x2)+n=1(2L0L(f(x)(BxLAxL+12Lx+A12x2))sin(nπLx)dx)eknπLtsin(nπLx)

____________________________________________________________________________________

4.1.5.12 [227] Both ends depend on time with source that depends on space only (general solution)

problem number 227

Added July 3, 2019

Solve the heat equation ut=kuxx+Q(x) For 0<x<L and t>0. The boundary conditions are u(0,t)=A(t)u(L,t)=B(t)

Initial condition is u(x,0)=f(x)

Mathematica

ClearAll["Global`*"]; 
pde =  D[u[x, t], t] == k*D[u[x, t], {x, 2}] + Q[x]; 
bc  = {u[0, t] == A[t], u[L, t] == B[t]}; 
ic  = u[x, 0] == f[x]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, u[x, t], {x, t},Assumptions->{L>0,k>0}], 60*10]];
 

{{u(x,t)K[1]=12(0tekπ2K[1]2(tK[2])L2Integrate[2sin(πxK[1]L)(LQ(x)+(xL)A(K[2])xB(K[2]))L3/2,{x,0,L},Assumptionsk>0L>0]dK[2]+ekπ2tK[1]2L20L2(LA(0)+xA(0)xB(0)+Lf(x))sin(πxK[1]L)L3/2dx)sin(πxK[1]L)L+x(B(t)A(t))L+A(t)}}

Maple

restart; 
interface(showassumed=0); 
pde :=  diff(u(x,t),t)=k*diff(u(x,t),x$2)+Q(x); 
ic  :=  u(x,0)=f(x); 
bc  :=  u(0,t)=A(t), u(L,t)=B(t); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,ic,bc],u(x,t)) assuming L>0,k>0),output='realtime'));
 

time expired Possible bug. Maple can solve with Q(x,t) source but not with Q(x)

Hand solution

Solve ut=kuxx+Q(x)u(0,t)=A(t)u(L,0)=B(t)u(x,0)=f(x)

Since boundary conditions are nonhomogeneous, the first step is to reduce the problem to one with homogeneous B.C. to be able to use separation of variables. This is done by using a reference solution r(x,t) which only needs to satisfy the B.C. Let the total solution be(2)u(x,t)=v(x,t)+r(x,t) Where v(x,t) is the transient solution which satisfies the homogeneous B.C. One can easily see that the reference function is(3)r(x,t)=A(t)+B(t)A(t)Lx Substituting (1) back into the original PDE givest(v(x,t)+r(x,t))=k2x2(v(x,t)+r(x,t))+Q(x)vt(x,t)+rt(x,t)=kvxx(x,t)+krxx(x,t)+Q(x)

But rxx(x,t)=0 and rt=A(t)+B(t)A(t)Lx and PDE becomesvt(x,t)=kvxx(x,t)rt(x,t)+Q(x) Let Q~(x)=Q(x)rt(x,t)(4)=Q(x)(A(t)+B(t)A(t)Lx)

Therefore the problem has been transformed tovt=kvxx+Q~(x)v(0,t)=0v(L,t)=0v(0,x)=F(x)=u(x,0)r(x,0)=f(x)(A(0)+B(0)A(0)Lx)

The basic solution for this type of PDE was already given in problem 4.1.1.11 on page 453 and the solution is

v(x,t)=n=1ekλntΦn(x)(2L0LF(s)Φn(s)ds)+n=1ekλntΦn(x)(0t2Lekλnτ(0LQ(s)Φn(s)ds)dτ)

Where Φn(x)=sin(λnx)λn=(nπL)2n=1,2,3,

Hence, using our Q~(x) and F(x) found above into this solution gives

v(x,t)=2Ln=1ek(nπL)2tsin(nπLx)(0L(f(s)(A(0)+B(0)A(0)Ls))sin(nπLs)ds)+2Ln=1ek(nπL)2tsin(nπLx)(0tek(nπL)2τ(0L(Q(s)(A(τ)+B(τ)A(τ)Ls))sin(nπLs)ds)dτ)

Since u(x,t)=v(x,t)+r(x,t) then the final solution isu(x,t)=A(t)+B(t)A(t)Lx+2Ln=1ek(nπL)2tsin(nπLx)(0L(f(s)(A(0)+B(0)A(0)Ls))sin(nπLs)ds)+2Ln=1ek(nπL)2tsin(nπLx)(0tek(nπL)2τ(0L(Q(s)(A(τ)+B(τ)A(τ)Ls))sin(nπLs)ds)dτ)

____________________________________________________________________________________

4.1.5.13 [228] Both ends depend on time with source that depends on space only (special case)

problem number 228

Added July 4, 2019

Solve the heat equation

ut=kuxx+Q(x)

For 0<x<L and t>0. The boundary conditions are u(0,t)=A(t)u(L,t)=B(t)

Initial condition is u(x,0)=f(x) using these values L=2k=110A(t)=sin(t)B(t)=2cos(t)Q(x)=xf(x)=x

Mathematica

ClearAll["Global`*"]; 
L=2; 
k=1/10; 
A=Sin[t]; 
B=Cos[t]; 
f=x; 
Q=x; 
pde =  D[u[x, t], t] == k*D[u[x, t], {x, 2}] + Q; 
bc  = {u[0, t] == A, u[L, t] == B}; 
ic  = u[x, 0] == f; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, u[x, t], {x, t}], 60*10]];
 

{{u(x,t)K[1]=1(80(π4cos(t)K[1]4+40π2sin(t)K[1]2e140π2tK[1]2(π4K[1]4+2(1)K[1](π4K[1]420π2K[1]2+1600))+(1)K[1](π4(sin(t)+2)K[1]440π2cos(t)K[1]2+3200))π3K[1]3(π4K[1]4+1600)2(1)K[1]e140π2tK[1]2πK[1])sin(12πxK[1])+12x(cos(t)sin(t))+sin(t)}}

Maple

restart; 
L:=2; 
k:=1/10; 
A:=sin(t); 
B:=cos(t); 
f:=x; 
Q:=x; 
pde :=  diff(u(x,t),t)=k*diff(u(x,t),x$2)+Q; 
ic  :=  u(x,0)=f; 
bc  :=  u(0,t)=A, u(L,t)=B; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,ic,bc],u(x,t)) ),output='realtime'));
 

u(x,t)=5x33(3cos(t)+3sin(t)40)x6+n=1(2(40π2(π2n2cos(t)+(π2n2sin(t)40cos(t))(1)n+40sin(t))n2+(40π4n4+(π6n680π4n4+3200π2n2128000)(1)n)eπ2n2t40)sin(πnx2)π3(π4n4+1600)n3)+sin(t)

Hand solution

Solve ut=kuxx+Q(x)u(0,t)=A(t)u(L,0)=B(t)u(x,0)=f(x)

With k=110,L=2,f(x)=x,Q(x)=x,A(t)=sin(t),B(t)=2cos(t).

The general problem above was solved in 4.1.5.12 on page 751 and the solution is

u(x,t)=A(t)+B(t)A(t)Lx+2Ln=1ek(nπL)2tsin(nπLx)(0L(f(s)(A(0)+B(0)A(0)Ls))sin(nπLs)ds)+2Ln=1ek(nπL)2tsin(nπLx)(0tek(nπL)2τ(0L(Q(s)(A(τ)+B(τ)A(τ)Ls))sin(nπLs)ds)dτ)

Substituting the specific values given above into this solution givesu(x,t)=sin(t)+2cos(t)sin(t)2x+n=1e110(nπ2)2tsin(nπ2x)(02(s(A(0)+B(0)A(0)2s))sin(nπ2s)ds)+n=1e110(nπ2)2tsin(nπ2x)0te110(nπ2)2τ(02(s(A(τ)+B(τ)A(τ)2s))sin(nπ2s)ds)dτ

But A(0)=0,B(0)=2,A(t)=cos(t),B(t)=2sin(t) and the above becomesu(x,t)=sin(t)+2cos(t)sin(t)2x+n=1e110(nπ2)2tsin(nπ2x)(02(s(0+202s))sin(nπ2s)ds)+n=1e110(nπ2)2tsin(nπ2x)0te110(nπ2)2τ(02(s(cos(τ)+(2sin(τ)cos(τ)2)s))sin(nπ2s)ds)dτ

Oru(x,t)=sin(t)+2cos(t)sin(t)2x+n=1e110(nπ2)2tsin(nπ2x)0te110(nπ2)2τ(02(s(cos(τ)(2sin(τ)+cos(τ)2)s))sin(nπ2s)ds)dτ

Animation is below

Source code used for the above

____________________________________________________________________________________

4.1.5.14 [229] Both ends depend on time with source that depends on time and space (general solution)

problem number 229

Added June 27, 2019

Solve the heat equation ut=kuxx+Q(x,t) For 0<x<L and t>0. The boundary conditions are u(0,t)=A(t)u(L,t)=B(t)

Initial condition is u(x,0)=f(x)

Mathematica

ClearAll["Global`*"]; 
pde =  D[u[x, t], t] == k*D[u[x, t], {x, 2}] + Q[x,t]; 
bc  = {u[0, t] == A[t], u[L, t] == B[t]}; 
ic  = u[x, 0] == f[x]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, u[x, t], {x, t},Assumptions->{L>0,k>0}], 60*10]];
 

{{u(x,t)K[1]=12(0tekπ2K[1]2(tK[2])L2Integrate[2sin(πxK[1]L)(LQ(x,K[2])+(xL)A(K[2])xB(K[2]))L3/2,{x,0,L},Assumptionsk>0L>0]dK[2]+ekπ2tK[1]2L20L2(LA(0)+xA(0)xB(0)+Lf(x))sin(πxK[1]L)L3/2dx)sin(πxK[1]L)L+x(B(t)A(t))L+A(t)}}

Maple

restart; 
interface(showassumed=0); 
pde :=  diff(u(x,t),t)=k*diff(u(x,t),x$2)+Q(x,t); 
ic  :=  u(x,0)=f(x); 
bc  :=  u(0,t)=A(t), u(L,t)=B(t); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,ic,bc],u(x,t)) assuming L>0,k>0),output='realtime'));
 

u(x,t)=L(0t(n=12(0L(x(ddτB(τ))L+Q(x,τ)(xL+1)(ddτA(τ)))sin(πnxL)dx)eπ2(tτ)kn2L2sin(πnxL)L)dτ)+L(n=12(0L(Lf(x)B(0)x+A(0)(L+x))sin(πnxL)Ldx)eπ2kn2tL2sin(πnxL)L)+xB(t)+(Lx)A(t)L

Hand solution

Solve ut=kuxx+Q(x,t)u(0,t)=A(t)u(L,0)=B(t)u(x,0)=f(x)

Since boundary conditions are nonhomogeneous, the first step is to reduce the problem to one with homogeneous B.C. to be able to use separation of variables. This is done by using a reference solution r(x,t) which only needs to satisfy the B.C. Let the total solution be(2)u(x,t)=v(x,t)+r(x,t) Where v(x,t) is the transient solution which satisfies the homogeneous B.C. One can easily see that the reference function is(3)r(x,t)=A(t)+B(t)A(t)Lx Substituting (1) back into the original PDE givest(v(x,t)+r(x,t))=k2x2(v(x,t)+r(x,t))+Q(x,t)vt(x,t)+rt(x,t)=kvxx(x,t)+krxx(x,t)+Q(x,t)

But rxx(x,t)=0 and rt=A(t)+B(t)A(t)Lx and PDE becomesvt(x,t)=kvxx(x,t)rt(x,t)+Q(x,t) Let Q~(x,t)=Q(x,t)rt(x,t)(4)=Q(x,t)(A(t)+B(t)A(t)Lx)

Therefore the problem has been transformed tovt=kvxx+Q~(x,t)v(0,t)=0v(L,t)=0v(0,x)=F(x)=u(x,0)r(x,0)=f(x)(A(0)+B(0)A(0)Lx)

The basic solution for this type of PDE was already given in problem 4.1.6.4 on page 806 and the solution isv(x,t)=n=1ekλntΦn(x)(2L0LF(s)Φn(s)ds)+n=1ekλntΦn(x)(0t2Lekλnτ(0LQ~(s,τ)Φn(s)ds)dτ)

Where Φn(x)=sin(λnx)λn=(nπL)2n=1,2,3,

Hence, using our Q~(x,τ) and F(x) found above into this solution gives

v(x,t)=2Ln=1ek(nπL)2tsin(nπLx)(0L(f(s)(A(0)+B(0)A(0)Ls))sin(nπLs)ds)+2Ln=1ek(nπL)2tsin(nπLx)(0tek(nπL)2τ(0L(Q(s,τ)(A(τ)+B(τ)A(τ)Ls))sin(nπLs)ds)dτ)

Since u(x,t)=v(x,t)+r(x,t) then the final solution isu(x,t)=A(t)+B(t)A(t)Lx+2Ln=1ek(nπL)2tsin(nπLx)(0L(f(s)(A(0)+B(0)A(0)Ls))sin(nπLs)ds)+2Ln=1ek(nπL)2tsin(nπLx)(0tek(nπL)2τ(0L(Q(s,τ)(A(τ)+B(τ)A(τ)Ls))sin(nπLs)ds)dτ)

____________________________________________________________________________________

4.1.5.15 [230] Both ends depend on time with source present (special case)

problem number 230

Added June 27, 2019

Solve the heat equation ut=kuxx+Q(x,t) For 0<x<L and t>0. The boundary conditions are u(0,t)=A(t)u(L,t)=B(t)

Initial condition is u(x,0)=f(x) using these values L=2k=110A(t)=sin(t)B(t)=2cos(t)Q(x,t)=xtetcos(t)f(x)=x

Mathematica

ClearAll["Global`*"]; 
L=2; 
k=1/10; 
A=Sin[t]; 
B=Cos[t]; 
f=x; 
Q=x*t*Exp[-t]*Cos[t]; 
pde =  D[u[x, t], t] == k*D[u[x, t], {x, 2}] + Q; 
bc  = {u[0, t] == A, u[L, t] == B}; 
ic  = u[x, 0] == f; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, u[x, t], {x, t}], 60*10]];
 

{{u(x,t)K[1]=12e140π2tK[1]2(40(80(1)K[1]π2(π2K[1]280)(π4K[1]4+1600)K[1]2(40(1)K[1]π2K[1]2)(π4K[1]480π2K[1]2+3200)2e140t(π2K[1]240)(cos(t)(2(1)K[1](π4K[1]4+1600)(t(π6K[1]6120π4K[1]4+6400π2K[1]2128000)40π2K[1]2(π2K[1]280))et(40(1)K[1]π2K[1]2)(π4K[1]480π2K[1]2+3200)2)+(et((1)K[1]π2K[1]2+40)(π4K[1]480π2K[1]2+3200)2+80(1)K[1](π4K[1]4+1600)(t(π4K[1]480π2K[1]2+3200)80(π2K[1]240)))sin(t)))(π4K[1]4+1600)(π4K[1]480π2K[1]2+3200)2+(1)K[1]+1)sin(12πxK[1])πK[1]+12x(cos(t)sin(t))+sin(t)}}

Maple

restart; 
L:=2; 
k:=1/10; 
A:=sin(t); 
B:=cos(t); 
f:=x; 
Q:=x*t*exp(-t)*cos(t); 
pde :=  diff(u(x,t),t)=k*diff(u(x,t),x$2)+Q; 
ic  :=  u(x,0)=f; 
bc  :=  u(0,t)=A, u(L,t)=B; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,ic,bc],u(x,t)) ),output='realtime'));
 

u(x,t)=xcos(t)2+n=1(2(80((π6n6t120(t+13)π4n4+6400(t+12)π2n2128000t)cos(t)+40(π4n4t80π2(t+1)n2+3200t+3200)sin(t))(π4n4+1600)(1)net+(40π2(π4n480π2n2+3200)2n2+(π12n12160π10n10+19200π8n81280000π6n6+56320000π4n42048000000π2n2+32768000000)(1)n)eπ2n2t40+40(π4n480π2n2+3200)2(π2n2cos(t)+(π2n2sin(t)40cos(t))(1)n+40sin(t)))sin(πnx2)π(π4n4+1600)(π4n480π2n2+3200)2n)(x2)sin(t)2

Hand solution

Solve ut=kuxx+Q(x,t)u(0,t)=A(t)u(L,0)=B(t)u(x,0)=f(x)

With k=110,L=2,f(x)=x,Q(x,t)=xtetcos(t),A(t)=sin(t),B(t)=2cos(t).

The general problem above was solved in 4.1.5.14 on page 764 and the solution isu(x,t)=A(t)+B(t)A(t)Lx+2Ln=1ek(nπL)2tsin(nπLx)(0L(f(s)(A(0)+B(0)A(0)Ls))sin(nπLs)ds)+2Ln=1ek(nπL)2tsin(nπLx)0tek(nπL)2τ(0L(Q(s,τ)(A(τ)+B(τ)A(τ)Lx))sin(nπLs)ds)dτ

Substituting the specific values given above into this solution givesu(x,t)=sin(t)+2cos(t)sin(t)2x+n=1e110(nπ2)2tsin(nπ2x)(02(s(A(0)+B(0)A(0)2s))sin(nπ2s)ds)+n=1e110(nπ2)2tsin(nπ2x)0te110(nπ2)2τ(02(sτeτcos(τ)(A(τ)+B(τ)A(τ)2s))sin(nπ2s)ds)dτ

But A(0)=0,B(0)=2,A(t)=cos(t),B(t)=2sin(t) and the above becomesu(x,t)=sin(t)+2cos(t)sin(t)2x+n=1e110(nπ2)2tsin(nπ2x)(02(s(0+202s))sin(nπ2s)ds)+n=1e110(nπ2)2tsin(nπ2x)0te110(nπ2)2τ(02(sτeτcos(τ)(cos(τ)+(2sin(τ)cos(τ)2)s))sin(nπ2s)ds)dτ

Oru(x,t)=sin(t)+2cos(t)sin(t)2x+n=1e110(nπ2)2tsin(nπ2x)0te110(nπ2)2τ(02(sτeτcos(τ)(cos(τ)(2sin(τ)+cos(τ)2)s))sin(nπ2s)ds)dτ

Animation is below

Source code used for the above

____________________________________________________________________________________

4.1.5.16 [231] Pinchover and Rubinstein 6.17

problem number 231

Added July 2, 2018.

Pinchover and Rubinstein’s exercise 6.17. Taken from Maple document for new improvements in Maple 2018.1

Solve the heat equation

tu(x,t)2x2u(x,t)=1+xcos(t)

For 0<x<1 and t>0. The boundary conditions are ux(0,t)=sin(t)ux(1,t)=sin(t)

Initial condition is u(x,0)=1+cos(2πx).

Mathematica

ClearAll["Global`*"]; 
pde = D[u[x, t], x] == D[u[x, t], {x, 2}] + 1 + x*Cos[t]; 
bc  = {Derivative[1, 0][u][0, t] == Sin[t], Derivative[1, 0][u][1, t] == Sin[t]}; 
ic  = u[x, 0] == 1 + Cos[2*Pi*x]; 
sol =  AbsoluteTiming[TimeConstrained[Simplify[DSolve[{pde, ic, bc}, u[x, t], x, t]], 60*10]];
 

Failed

Maple

restart; 
pde := diff(u(x, t), t)= (diff(u(x, t), x, x)) + 1+x*cos(t); 
bc  := (D[1](u))(0, t) = sin(t), (D[1](u))(1, t) = sin(t); 
ic  := u(x, 0) = 1+cos(2*Pi*x); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol', pdsolve([pde, ic, bc],u(x,t))),output='realtime'));
 

u(x,t)=xsin(t)+cos(2πx)e4π2t+t+1

____________________________________________________________________________________

4.1.5.17 [232] nonhomogeneous BC

problem number 232

Added March 28, 2018. A problem from my PDE animation page.

Solve the heat equation

ut=kuxx+x

For 0<x<π and t>0. The boundary conditions are u(0,t)=tsint5u(π,t)=tcost10

Initial condition is u(x,0)=6020x.

Mathematica

ClearAll["Global`*"]; 
pde =  D[u[x, t], t] == D[u[x, t], {x, 2}] + x; 
bc  = {u[0, t] == (t*Sin[t])/5, u[Pi, t] == (t*Cos[t])/10}; 
ic  = u[x, 0] == 60 - 2*x; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, u[x, t], x, t, Assumptions -> {t > 0, x > 0}], 60*10]];
 

{{u(x,t)10πK[1]=1etK[1]2(20(30+(1)K[1](30+π))K[1]2+(1)K[1]+1K[1]8+10(1)K[1]πK[1]810(1)K[1]etK[1]2πK[1]84K[1]6+(1)K[1]K[1]4+20(1)K[1]πK[1]420(1)K[1]etK[1]2πK[1]4+etK[1]2cos(t)(((1)K[1]K[1]4+4K[1]2+(1)K[1]+1)K[1]2+t((1)K[1]2K[1]2)(K[1]4+1))K[1]2etK[1]2(2(K[1]4+(1)K[1]+1K[1]21)K[1]2+t((1)K[1]K[1]2+2)(K[1]4+1))sin(t)K[1]2+10(1)K[1]π10(1)K[1]etK[1]2π(K[1]4+1)2)sin(xK[1])5πK[1]3+2t(πx)sin(t)+txcos(t)10π}}

Maple

restart; 
interface(showassumed=0); 
pde :=  diff(u(x,t),t)=diff(u(x,t),x$2)+x; 
ic  :=  u(x,0)=(60-2*x); 
bc  :=  u(0,t)=t/5*sin(t), u(Pi,t)=t/10*cos(t); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol', pdsolve([pde,ic,bc],u(x,t)) assuming t>0,x>0),output='realtime'));
 

u(x,t)=(xcos(t)+(2x+2π)sin(t))t+2π(n=120(((n4t2n2+t)n2cos(t)+(n6+n4tn2+t)sin(t))n210+((n4t2n2+t)n4sin(t)20+(n6+n4tn2+t)n2cos(t)20π(n4+1)22)(1)n+(30n10+299n65+30n2+((π30)n10+(π2120)n8+(2π60)n6+(π+120)n4+(π30)n2+π2)(1)n)en2t)sin(nx)π(n4+1)2n3)10π

____________________________________________________________________________________

4.1.5.18 [233] Haberman 8.2.2. (a)

problem number 233

Added Nov 27, 2018.

Problem 8.2.2 part(a) from Richard Haberman applied partial differential equations book, 5th edition

Solve the heat equation for u(x,t)

ut=uxx+Q(x,t)

For 0<x<L and t>0. The boundary conditions are ux(0,t)=A(t)ux(L,t)=B(t)

Initial condition is u(x,0)=f(x)

For hand solution see my HW9, Math 322, UW Madison. The text does not actually asks to solve this PDE but only to reduce the problem to one with homogeneous B.C.

Mathematica

ClearAll["Global`*"]; 
pde =  D[u[x, t], t] == k*D[u[x, t], {x, 2}] + Q[x, t]; 
bc  = {Derivative[1, 0][u][0, t] == A[t], Derivative[1, 0][u][L, t] == B[t]}; 
ic  = u[x, 0] == f[x]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, u[x, t], x, t, Assumptions -> L > 0], 60*10]];
 

{{u(x,t)K[1]=12cos(πxK[1]L)(ekπ2tK[1]2L20Lcos(πxK[1]L)(x(x(A(0)B(0))2LA(0))+2Lf(x))2L3/2dx+0tekπ2K[1]2(tK[2])L2Integrate[cos(πxK[1]L)(A(K[2])x2B(K[2])x22LA(K[2])x2kA(K[2])+2kB(K[2])+2LQ(x,K[2]))2L3/2,{x,0,L},AssumptionsL>0]dK[2])L+0tIntegrate[2LQ(x,K[2])2LxA(K[2])+x2A(K[2])2kA(K[2])x2B(K[2])+2kB(K[2])2L3/2,{x,0,L},AssumptionsL>0]dK[2]+0L2A(0)Lx+A(0)x2B(0)x2+2Lf(x)2L3/2dxL+x2(B(t)A(t))2L+xA(t)}}

Maple

restart; 
interface(showassumed=0); 
pde :=  diff(u(x,t),t)+k*diff(u(x,t),x$2)+Q(x,t); 
ic  :=  u(x,0)=f(x); 
bc  := eval( diff(u(x,t),x),x=0)=A(t), eval( diff(u(x,t),x),x=L)=B(t); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol', pdsolve([pde,ic,bc],u(x,t)) assuming L>0),output='realtime'));
 

u(x,t)=x2B(t)2L+(x22L+x)A(t)+0t((n=12(0L(x2(ddτB(τ))2+LQ(x,τ)+(Lx2)x(ddτA(τ))(A(τ)B(τ))k)cos(πnxL)Ldx)cos(πnxL)eπ2(tτ)kn2L2L)+0Lx2(ddτB(τ))2LQ(x,τ)+2(A(τ)B(τ))k+(2Lx+x2)(ddτA(τ))2LdxL)dτ+(n=12(0L(2Lf(x)B(0)x2+(2Lx+x2)A(0))cos(πnxL)2Ldx)cos(πnxL)eπ2kn2tL2L)+0L2Lf(x)B(0)x2+(2Lx+x2)A(0)2LdxL

Hand solution

Solve ut=kuxx+Q(x,t)ux(0,t)=A(t)ux(L,0)=B(t)u(x,0)=f(x)

Let (1)u(x,t)=v(x,t)+r(x,t) Since the problem has time dependent source function Q(x,t) then r(x,t) is now a reference function that only needs to satisfy the non-homogenous boundary conditions which in this problem are at both ends and v(x,t) has homogenous boundary conditions. The first step is to find r(x,t). Letr(x,t)=c1(t)x+c2(t)x2 Thenr(x,t)x=c1(t)+2c2(t)x At x=0A(t)=c1(t) And at x=LB(t)=c1(t)+2c2(t)Lc2(t)=B(t)c1(t)2L

Solving for c1,c2 gives(2)r(x,t)=A(t)x+(B(t)A(t)2L)x2 Replacing (1) into the original PDE ut=kuxx+Q(x,t) givest(v(x,t)r(x,t))=k2x(v(x,t)r(x,t))+Q(x,t)vtrt=k2vx2k2rx2+Q(x,t)

But rxx=B(t)A(t)L, hence the above reduces to(3)vt=kvxx+Q(x,t)kB(t)A(t)L+rt Let Q~(x,t)=Q(x,t)+rtkB(t)A(t)L Then (3) becomes(4)vt=kvxx+Q~(x,t)vt(0,t)=0vt(L,t)=0

And initial condition is v(x,0)=F(x)=u(x,0)r(x,0)=f(x)(A(0)x+(B(0)A(0)2L)x2)

PDE (4) with its homogenous boundary conditions is standard one, its corresponding eigenvalue boundary value ODE X+λX=0 has λ=0 as eigenvalue with corresponding eigenfunction Φ0(x)=1 and λn=(nπL)2 for n=1,2,3, with corresponding eigenfunctions Φn(x)=cos(λnx). Using these, we can write the solution to (4) using eigenfunction expansion as(4A)v(x,t)=n=0cn(t)Φn(x) Hence vt(x,t)=n=0cn(t)Φn(x) and vxx(x,t)=n=0cn(t)Φn(x). Substituting these into (4) givesn=0cn(t)Φn(x)=n=0cn(t)Φn(x)+Q~(x,t) Expanding Q~(x,t) using same eigenfunctions since they are complete, the above becomesn=0cn(t)Φn(x)=n=0cn(t)Φn(x)+n=0bn(t)Φn(x) But Φn(x)=λnΦn(x) and the above becomesn=0cn(t)Φn(x)=n=0cn(t)λnΦn(x)+n=0bn(t)Φn(x)cn(t)Φn(x)+cn(t)λnΦn(x)=bn(t)Φn(x)cn(t)+cn(t)λn=bn(t)(5)cn(t)+cn(t)n2π2L2=bn(t)

To find bn(t), since Q~(x,t)=Q(x,t)+rtkB(t)A(t)L thenQ(x,t)+rtkB(t)A(t)L=n=0bn(t)Φn(x) Multiplying both sides by Φm(x) and integrating gives0L(Q(x,t)+rtkB(t)A(t)L)Φm(x)dx=0Ln=0bn(t)Φn(x)Φm(x)dx=n=0bn(t)(0LΦn(x)Φm(x)dx)

By orthogonality0L(Q(x,t)+rtkB(t)A(t)L)Φm(x)dx=bm(t)0LΦm2(x)dx When m=0,Φ0(x)=1 and the above gives0LQ(x,t)+rtkB(t)A(t)Ldx=b0(t)0Ldxb0(t)=1L0LQ(x,t)+rtkB(t)A(t)Ldx

When m=1,2,3,0L(Q(x,t)+rtkB(t)A(t)L)cos(mπLx)dx=bm(t)0Lcos2(mπLx)dx0L(Q(x,t)+rtkB(t)A(t)L)cos(mπLx)dx=bm(t)L2bm(t)=2L0L(Q(x,t)+rtkB(t)A(t)L)cos(mπLx)dx

Therefore (5) is now solved. When n=0 (5) becomesc0(t)+c0(t)n2π2L2=b0(t)c0(t)=b0(t)c0(t)=1L0LQ(x,t)+rtkB(t)A(t)Ldx

Hencec0(t)=0t(1L0LQ(x,τ)+rτkB(τ)A(τ)Ldx)dt+C0 For n=1,2,3, (5) becomescn(t)+cn(t)n2π2L2=bn(t)=2L0L(Q(x,τ)+rτkB(τ)A(τ)L)cos(nπLx)dx

Integrating factor is I=en2π2L2dt=en2π2L2t and the solution to the above becomes

ddt(cn(t)en2π2L2t)=2en2π2L2tL0L(Q(x,t)+rtkB(t)A(t)L)cos(nπLx)dxcn(t)en2π2L2t=0t(2en2π2L2τL0L(Q(x,τ)+rτkB(τ)A(τ)L)cos(nπLx)dx)dt+Cncn(t)=en2π2L2t0t(2en2π2L2τL0L(Q(x,τ)+rτkB(τ)A(τ)L)cos(nπLx)dx)dt+Cnen2π2L2t

Now that we found cn(t) for n=0,1,2,3, the solution for v(x,t) is found from 4A.

v(x,t)=n=0cn(t)Φn(x)=0t(1L0LQ(x,τ)+rτkB(τ)A(τ)Ldx)dt+C0+n=1cn(t)Φn(x)=0t(1L0LQ(x,τ)+rτkB(τ)A(τ)Ldx)dt+C0+n=1(en2π2L2t0t(2en2π2L2τL0L(Q(x,τ)+rτkB(τ)A(τ)L)cos(nπLx)dx)dt+Cnen2π2L2t)cos(nπLx)

But u(x,t)=v(x,t)+r(x,t) Hence

u(x,t)=A(t)x+(B(t)A(t)2L)x2+0t(1L0LQ(x,τ)+rτkB(τ)A(τ)Ldx)dt+C0+n=1(en2π2L2t0t(2en2π2L2τL0L(Q(x,τ)+rτkB(τ)A(τ)L)cos(nπLx)dx)dt+Cnen2π2L2t)cos(nπLx)

But rτ=ddt(A(τ)x+(B(τ)A(τ)2L)x2)=2LA(τ)x+(B(τ)A(τ))x22L

Hence

u(x,t)=C0+A(t)x+(B(t)A(t)2L)x2+12L20t(0L2LQ(x,τ)+2LA(τ)x+(B(τ)A(τ))x22k(B(τ)A(τ))dx)dt+n=1cosnπLx(en2π2L2t0t(en2π2L2τL20L(2LQ(x,τ)+2LA(τ)x+(B(τ)A(τ))x22k(B(τ)A(τ)))cos(nπLx)dx)dt+Cnen2π2L2t)

The constants C0,Cn are found from initial conditions u(x,0)=f(x).

____________________________________________________________________________________

4.1.5.19 [234] Articolo 8.4.3

problem number 234

Added December 20, 2018.

Example 8.4.3 from Partial differential equations and boundary value problems with Maple by George A. Articolo, 2nd ed.

Solve the heat equation for u(x,t)

ut=kuxx+t

For 0<x<1 and t>0. The boundary conditions are u(0,t)=5u(1,t)+ux(1,t)=10

Initial condition is u(x,0)=40x23+45x2+5 and k=120

Mathematica

ClearAll["Global`*"]; 
k = 1/20; 
pde =  D[u[x, t], t] == k*D[u[x, t], {x, 2}] + t; 
bc  = {u[0, t] == 5, u[1, t] + Derivative[1, 0][u][1, t] == 10}; 
ic  = u[x, 0] == (-40*x^2)/3 + (45*x)/2 + 5; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, u[x, t], x, t], 60*10]];
 

{{u(x,t){5x2+K[1]=12(40e120tK[2,K[1]](cos(K[2,K[1]])1)(e120tK[2,K[1]](tK[2,K[1]]20)+20)cos(2K[2,K[1]])+3K[2,K[1]]5/2+40e120tK[2,K[1]](cos(K[2,K[1]])(K[2,K[1]]+4)+K[2,K[1]]sin(K[2,K[1]])4)3cos(2K[2,K[1]])+3K[2,K[1]]3/2)sin(xK[2,K[1]])cos2(K[2,K[1]])+1+5tan(K[2,K[1]])+K[2,K[1]]=0K[1]ZK[1]1K[2,K[1]]>0IndeterminateTrue}}

Maple

restart; 
pde := diff(u(x, t), t) = (1/20)*(diff(u(x, t), x$2))+t; 
bc  := u(0, t) = 5, (u(1, t)+ eval( diff(u(x,t),x),x=1)) = 10; 
ic  := u(x, 0) = -40*x^2/3+45*x/2+5; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol', pdsolve([pde, bc,ic], u(x, t))),output='realtime'));
 

u(x,t)=5x2+0t(n1=0{0λn=04(cos(λn)1)τe(tτ)λn220sin(xλn)2λn+sin(2λn)otherwise)dτ+(n=080(λn2cos(λn)+λnsin(λn)+4cos(λn)4)etλn220sin(xλn)3(2λn+sin(2λn))λn2)+5where{λn+tan(λn)=00<λn}

____________________________________________________________________________________