Added Sept 12, 2019.
Taken from Peter Olver textbook, Introduction to Partial differential equations. problem 2.2.17
Solve
Mathematica ✓
ClearAll["Global`*"]; pde = D[u[x,t], t] -x*D[u[x,t], x]== 0; ic = u[x,0]==1/(1+x^2); sol = AbsoluteTiming[TimeConstrained[DSolve[{pde,ic}, u[x,t], {x,t}], 60*10]];
Maple ✓
restart; pde := diff(u(x,t), t) -x*diff(u(x,t),x) =0; ic:=u(x,0)=1/(1+x^2); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,ic],u(x,t))),output='realtime'));
Hand solution
Solve the initial value problem
Solution
Let
Solving (3) gives
We just need to find
Substituting (6) in (5) gives
Source code used for the above
____________________________________________________________________________________