2.15.7 Linear PDE, initial conditions at t=t0

problem number 139

Added December 20, 2018.

Example 26, Taken from https://www.mapleprimes.com/posts/209970-Exact-Solutions-For-PDE-And-Boundary--Initial-Conditions-2018

Solve for w(x1,x2,x3,t)

wt=w2x1x2+w2x1x3+w2x32+w2x2x3

With initial condition w(x1,x2,x3,t0)=ex1+x23x3

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x1, x2, x3, t], t] == D[w[x1, x2, x3, t], x1, x2] + D[w[x1, x2, x3, t], x1, x3] + D[w[x1, x2, x3, t], {x3, 2}] - D[w[x1, x2, x3, t], x2, x3]; 
ic  = w[x1, x2, x3, t0] == Exp[x1] + x2 - 3*x3; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[{pde, ic}, w[x1, x2, x3, t], {x1, x2, x3, t}], 60*10]];
 

{{w(x1,x2,x3,t)ex1+x23x3}}

Maple

restart; 
pde := diff(w(x1, x2, x3, t), t)= diff(w(x1,x2,x3,t),x1,x2)+diff(w(x1,x2,x3,t),x1,x3)+diff(w(x1,x2,x3,t),x3$2)-diff(w(x1,x2,x3,t),x2,x3); 
ic  := w(x1, x2, x3, t0) = exp(x1)+x2-3*x3; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde, ic],w(x1,x2,x3,t))),output='realtime'));
 

w(x1,x2,x3,t)=x23x3+ex1

____________________________________________________________________________________