6.8.10 4.4

6.8.10.1 [1821] Problem 1
6.8.10.2 [1822] Problem 2
6.8.10.3 [1823] Problem 3
6.8.10.4 [1824] Problem 4
6.8.10.5 [1825] Problem 5
6.8.10.6 [1826] Problem 6

6.8.10.1 [1821] Problem 1

problem number 1821

Added Oct 10, 2019.

Problem Chapter 8.4.4.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) wx+awy+bwz=ccothn(βx)w

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + a*D[w[x, y,z], y] +  b*D[w[x,y,z],z]== c*Coth[beta*x]^n*w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)exp(ccothn+1(βx)2F1(1,n+12;n+32;coth2(βx))βn+β)c1(yax,zbx)}}

Maple

restart; 
local gamma; 
pde :=  diff(w(x,y,z),x)+a*diff(w(x,y,z),y)+ b*diff(w(x,y,z),z)= c*coth(beta*x)^n*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(ax+y,xb+z)ec(coth(βx))ndx

____________________________________________________________________________________

6.8.10.2 [1822] Problem 2

problem number 1822

Added Oct 10, 2019.

Problem Chapter 8.4.4.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) awx+bwy+ccoth(λx)wz=(kcoth(βx)+scoth(γz))w

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*D[w[x, y,z], y] +  c*Coth[lambda*x]*D[w[x,y,z],z]== (k*Coth[beta*x]+s*Coth[gamma*z])*w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)c1(ybxa,zclog(sinh(λx))aλ)exp(1xkcoth(βK[1])+scoth(γ(aλzclog(sinh(λx))+clog(sinh(λK[1])))aλ)adK[1])}}

Maple

restart; 
local gamma; 
pde :=  a*diff(w(x, y,z), x) + b*diff(w(x, y,z), y) +  c*coth(lambda*x)*diff(w(x,y,z),z)= (k*coth(beta*x)+s*coth(gamma*z))*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(ayxba,2zaλ+cln(coth(xλ)1)+cln(coth(xλ)+1)2aλ)ex1a(kcoth(β_a)+scoth(γ(2zaλcln(coth(xλ)1)cln(coth(xλ)+1)+ln(coth(_aλ)1)c+ln(coth(_aλ)+1)c)2aλ))d_a

____________________________________________________________________________________

6.8.10.3 [1823] Problem 3

problem number 1823

Added Oct 10, 2019.

Problem Chapter 8.4.4.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) wx+acothn(βx)wy+bcothk(λx)wz=ccothm(γx)w

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + a*Coth[beta*x]^n*D[w[x, y,z], y] +  b*Coth[lambda*x]^k*D[w[x,y,z],z]== c*Coth[gamma*x]^m *w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)exp(ccothm+1(γx)2F1(1,m+12;m+32;coth2(γx))γm+γ)c1(zbcothk+1(λx)2F1(1,k+12;k+32;coth2(λx))kλ+λ,yacothn+1(βx)2F1(1,n+12;n+32;coth2(βx))βn+β)}}

Maple

restart; 
local gamma; 
pde :=  diff(w(x, y,z), x) + a*coth(beta*x)^n*diff(w(x, y,z), y) +  b*coth(lambda*x)^k*diff(w(x,y,z),z)= c*coth(gamma*x)^m *w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(a(coth(βx))ndx+y,b(coth(xλ))kdx+z)ec(coth(xγ))mdx

____________________________________________________________________________________

6.8.10.4 [1824] Problem 4

problem number 1824

Added Oct 10, 2019.

Problem Chapter 8.4.4.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) awx+bcoth(βy)wy+ccoth(λx)wz=kcoth(γz)w

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*Coth[beta*y]*D[w[x, y,z], y] +  c*Coth[lambda*x]*D[w[x,y,z],z]== k*Coth[gamma*z] *w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

Failed

Maple

restart; 
local gamma; 
pde :=  a*diff(w(x, y,z), x) + b*coth(beta*y)*diff(w(x, y,z), y) +  c*coth(lambda*x)*diff(w(x,y,z),z)= k*coth(gamma*z) *w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(12βb(2bβx+aln((RootOf(βyarccoth(_Z1))1)2RootOf(βyarccoth(_Z1))2)ln(RootOf(βyarccoth(_Z1)))a),2zaλ+cln(coth(xλ)1)+cln(coth(xλ)+1)2aλ)exkacoth(γ(2zaλcln(coth(xλ)1)cln(coth(xλ)+1)+ln(coth(_aλ)1)c+ln(coth(_aλ)+1)c)2aλ)d_a

____________________________________________________________________________________

6.8.10.5 [1825] Problem 5

problem number 1825

Added Oct 10, 2019.

Problem Chapter 8.4.4.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) awx+bcoth(βy)wy+ccoth(γz)wz=kcoth(λx)w

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*Coth[beta*y]*D[w[x, y,z], y] +  c*Coth[gamma*z]*D[w[x,y,z],z]== k*Coth[lambda*x] *w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)ek(log(tanh(λx))+log(cosh(λx)))aλc1(alog(sech(βy))+bβx2aβ,2clog(sech(βy))βblog(sech2(γz))γ)}}

Maple

restart; 
local gamma; 
pde :=  a*diff(w(x, y,z), x) + b*coth(beta*y)*diff(w(x, y,z), y) +  c*coth(gamma*z)*diff(w(x,y,z),z)= k*coth(lambda*x) *w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(12βb(2bβx+aln((RootOf(βyarccoth(_Z1))1)2RootOf(βyarccoth(_Z1))2)ln(RootOf(βyarccoth(_Z1)))a),12cγ(2cγx+aln((RootOf(γzarccoth(_Z1))1)2RootOf(γzarccoth(_Z1))2)ln(RootOf(γzarccoth(_Z1)))a))(coth(xλ)1)k2aλ(coth(xλ)+1)k2aλ

____________________________________________________________________________________

6.8.10.6 [1826] Problem 6

problem number 1826

Added Oct 10, 2019.

Problem Chapter 8.4.4.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) a1cothn1(λ1x)wx+b1cothm1(β1y)wy+c1cothk1(γ1z)wz=(a2cothn2(λ2x)wx+b2cothm2(β2y)wy+c2cothk2(γ2z))w

Mathematica

ClearAll["Global`*"]; 
pde =  a1*Coth[lambda1*x]^n1*D[w[x, y,z], x] + b1*Coth[beta1*y]^m1*D[w[x, y,z], y] +  c1*Coth[gamma1*x]^k1*D[w[x, y,z], z]== (a2*Coth[lambda2*x]^n2+b2*Coth[beta2*y]^m2+c2*Coth[gamma2*x]^k2) *w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

Failed

Maple

restart; 
local gamma; 
pde :=  a1*coth(lambda1*x)^n1*diff(w(x, y,z), x) + b1*coth(beta1*y)^m1*diff(w(x, y,z), y) +  c1*coth(gamma1*x)^k1*diff(w(x,y,z),z)= ( a2*coth(lambda2*x)^n2+b2*coth(beta2*y)^m2+c2*coth(gamma2*x)^k2) *w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1((coth(λ1x))n1dx+(coth(β1y))m1a1b1dy,1a1(za1c1(cosh(λ1x)sinh(λ1x))n1(cosh(γ1x)sinh(γ1x))k1dx))ex(coth(λ1_f))n1a1(a2(coth(λ2_f))n2+c2(coth(γ2_f))k2+b2(coth(β2RootOf((coth(λ1_f))n1d_f_Z(coth(β1_a))m1a1b1d_a(coth(λ1x))n1dx+(coth(β1y))m1a1b1dy)))m2)d_f

____________________________________________________________________________________