6.7.5 3.1

6.7.5.1 [1615] Problem 1
6.7.5.2 [1616] Problem 2
6.7.5.3 [1617] Problem 3
6.7.5.4 [1618] Problem 4
6.7.5.5 [1619] Problem 5
6.7.5.6 [1620] Problem 6
6.7.5.7 [1621] Problem 7
6.7.5.8 [1622] Problem 8

6.7.5.1 [1615] Problem 1

problem number 1615

Added June 11, 2019.

Problem Chapter 7.3.1.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

wx+aeλxwy+beβxwz=ceγx

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + a*Exp[lambda*x]*D[w[x, y,z], y] +b*Exp[beta*x]*D[w[x,y,z],z]== c*Exp[gamma*x]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)ceγxγ+c1(yaeλxλ,zbeβxβ)}}

Maple

restart; 
local gamma; 
pde := diff(w(x,y,z),x)+ a*exp(lambda*x)*diff(w(x,y,z),y)+b*exp(beta*x)*diff(w(x,y,z),z)=  c*exp(gamma*x); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=1γ(_F1(aexλ+λyλ,βzbeβxβ)γ+cexγ)

____________________________________________________________________________________

6.7.5.2 [1616] Problem 2

problem number 1616

Added June 11, 2019.

Problem Chapter 7.3.1.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

wx+aeλxwy+beβywz=ceγy+seμz

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + a*Exp[lambda*x]*D[w[x, y,z], y] +b*Exp[beta*y]*D[w[x,y,z],z]== c*Exp[gamma*y]+s*Exp[mu*z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)1x(eγ(a(eλx+eλK[1])λ+y)c+exp(μ(λzbeβ(yaeλxλ)Ei(aβeλxλ)+beβ(yaeλxλ)Ei(aβeλK[1]λ))λ)s)dK[1]+c1(yaeλxλ,zbEi(aβeλxλ)eβ(yaeλxλ)λ)}}

Maple

restart; 
local gamma; 
pde := diff(w(x,y,z),x)+ a*exp(lambda*x)*diff(w(x,y,z),y)+b*exp(beta*y)*diff(w(x,y,z),z)=  c*exp(gamma*y)+s*exp(mu*z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=xceγ(aexλae_aλλy)λ+seμλ(b(expIntegral(1,βaexλλ)expIntegral(1,aβe_aλλ))eβ(aexλλy)λ+λz)d_a+_F1(aexλ+λyλ,1λ(beβ(aexλλy)λexpIntegral(1,βaexλλ)+λz))

____________________________________________________________________________________

6.7.5.3 [1617] Problem 3

problem number 1617

Added June 11, 2019.

Problem Chapter 7.3.1.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

wx+aeλywy+beβywz=ceγx+seμz

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + a*Exp[lambda*y]*D[w[x, y,z], y] +b*Exp[beta*y]*D[w[x,y,z],z]== c*Exp[gamma*x]+s*Exp[mu*z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)1x(eγK[1]c+exp(μ(bλ(xK[1])(aλ(xK[1])+eλy)βλ+(βλ)z+beλy((aλ(xK[1])+eλy)βλ(eλy)βλ)a)λβ)s)dK[1]+c1(aλx+eλyλ,b(eλy)1βλa(λβ)+z)}}

Maple

restart; 
local gamma; 
pde := diff(w(x,y,z),x)+ a*exp(lambda*y)*diff(w(x,y,z),y)+b*exp(beta*y)*diff(w(x,y,z),z)=  c*exp(gamma*x)+s*exp(mu*z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=xce_aγ+seμ(βλ)a(b((eλy)1)βλeλy+b(eλy+aλ(x_a))((eλy+aλ(x_a))1)βλ+za(βλ))d_a+_F1(xλaeλyaλ,1(βλ)a(b((eλy)1)βλeλy+za(βλ)))

____________________________________________________________________________________

6.7.5.4 [1618] Problem 4

problem number 1618

Added June 11, 2019.

Problem Chapter 7.3.1.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

wx+(A1eα1x+B1eν1x+λy)wy+(A2eα2x+B2eν2x+βy)wz=keγz

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + (A1*Exp[alpha1*x] +B1*Exp[nu1*x+lambda*y] )*D[w[x, y,z], y] +(A2*Exp[alpha2*x] +B2*Exp[nu2*x+beta*y] )*D[w[x,y,z],z]== k*Exp[gamma*z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

Failed

Maple

restart; 
local gamma; 
pde := diff(w(x,y,z),x)+ (A1*exp(alpha1*x) +B1*exp(nu1*x+lambda*y) )*diff(w(x,y,z),y)+(A2*exp(alpha2*x) +B2*exp(nu2*x+beta*y) )*diff(w(x,y,z),z)= k*exp(gamma*z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=xkeγ(A2eα2_f+(B1eν1x+λA1eα1xα1dxλeλA1eα1_f+ν1_fα1α1d_fB1λ+eλ(A1eα1xα1y)α1)βλB2eβA1eα1_f+ν2_fα1α1d_fxA2eα2_b+(B1eν1x+λA1eα1xα1dxλeλA1eα1_b+ν1_bα1α1d_bB1λ+eλ(A1eα1xα1y)α1)βλB2eβA1eα1_b+ν2_bα1α1d_b+z)d_f+_F1(1λ(B1eν1x+λA1eα1xα1dxλeλ(A1eα1xα1y)α1),xA2eα2_b+(B1eν1x+λA1eα1xα1dxλeλA1eα1_b+ν1_bα1α1d_bB1λ+eλ(A1eα1xα1y)α1)βλB2eβA1eα1_b+ν2_bα1α1d_b+z)

____________________________________________________________________________________

6.7.5.5 [1619] Problem 5

problem number 1619

Added June 11, 2019.

Problem Chapter 7.3.1.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

aeαxwx+beβywy+ceγzwz=keλx

Mathematica

ClearAll["Global`*"]; 
pde =  a*Exp[alpha*x]*D[w[x, y,z], x] + b*Exp[beta*y]*D[w[x, y,z], y] +c*Exp[gamma*z]*D[w[x,y,z],z]== k*Exp[lambda*x]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)kex(λα)a(αλ)+c1(beαxaαeβyβ,ceαxaαeγzγ)}}

Maple

restart; 
local gamma; 
pde := a*exp(alpha*x)*diff(w(x,y,z),x)+  b*exp(beta*y)*diff(w(x,y,z),y)+c*exp(gamma*z)*diff(w(x,y,z),z)= k*exp(lambda*x); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=1(α+λ)a((α+λ)a_F1((eβyβbaαeαx)eαxβyαbβ,(eγzcγaαeαx)eαxγzαcγ)+kex(αλ))

____________________________________________________________________________________

6.7.5.6 [1620] Problem 6

problem number 1620

Added June 11, 2019.

Problem Chapter 7.3.1.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

aeβywx+beαxwy+ceγzwz=keλx

Mathematica

ClearAll["Global`*"]; 
pde =  a*Exp[beta*x]*D[w[x, y,z], x] + b*Exp[alpha*x]*D[w[x, y,z], y] +c*Exp[gamma*z]*D[w[x,y,z],z]== k*Exp[lambda*x]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)kex(λβ)a(βλ)+c1(ceβxaβeγzγ,ybeαxβxaαaβ)}}

Maple

restart; 
local gamma; 
pde := a*exp(beta*y)*diff(w(x,y,z),x)+  b*exp(alpha*x)*diff(w(x,y,z),y)+c*exp(gamma*z)*diff(w(x,y,z),z)= k*exp(lambda*x); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=xe_aλkαeβyaαbβ(eαxeα_a)d_a+_F1(eβyaαeαxbβαbβ,βb(eβyaαeαxbβ)αcγ(aeβyeγzαeαxeγzbβ+αcγxln(eβyaαβb)γc))

____________________________________________________________________________________

6.7.5.7 [1621] Problem 7

problem number 1621

Added June 11, 2019.

Problem Chapter 7.3.1.7, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

(a1+a2eαx)wx+(b1+b2eβy)wy+(c1+c2eγz)wz=k1+k2eαx

Mathematica

ClearAll["Global`*"]; 
pde =  (a1+a2*Exp[alpha*x])*D[w[x, y,z], x] + (b1+b2*Exp[beta*y])*D[w[x, y,z], y] +(c1+c2*Exp[gamma*z])*D[w[x,y,z],z]== k1+k2*Exp[alpha*x]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)(a1k2a2k1)log(a1+a2eαx)+a2αk1xa1a2α+c1(log(eβy(a1+a2eαx)b1βa1αb1+b2eβy)b1βxa1,log(eγz(a1+a2eαx)c1γa1αc1+c2eγz)c1γxa1)}}

Maple

restart; 
local gamma; 
pde := (a1+a2*exp(alpha*x))*diff(w(x,y,z),x)+ (b1+b2*exp(beta*y))*diff(w(x,y,z),y)+(c1+c2*exp(gamma*z))*diff(w(x,y,z),z)= k1+k2*exp(alpha*x); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=1αa2a1(_F1(1αa1βb1(αa1RootOf(yαa1βαa1ln(b1+e_Zb2(a1+a2eαx)βb1αa1)+ln(a1+a2eαx)βb1)(ln(a1+a2eαx)b1+α(ya1+b1x))β),1αa1c1γ(αa1RootOf(zαa1γαa1ln(c1+e_Zc2(a1+a2eαx)c1γαa1)+ln(a1+a2eαx)c1γ)γ(c1ln(a1+a2eαx)+α(a1z+c1x))))αa2a1+ln(a1+a2eαx)k2a1ln(a1+a2eαx)k1a2+k1ln(eαx)a2)

____________________________________________________________________________________

6.7.5.8 [1622] Problem 8

problem number 1622

Added June 11, 2019.

Problem Chapter 7.3.1.8, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

eβy(a1+a2eαx)wx+eαx(b1+b2eβy)wy+ceβy+γzwz=k3eβy(k1+k2eαx)

Mathematica

ClearAll["Global`*"]; 
pde = Exp[beta*y]*(a1+a2*Exp[alpha*x])*D[w[x, y,z], x] + Exp[alpha*x]*(b1+b2*Exp[beta*y])*D[w[x, y,z], y] +c*Exp[beta*y+gamma*z]*D[w[x,y,z],z]== k3*Exp[beta*y]*(k1+k2*Exp[alpha*x]); 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)k3((a1k2a2k1)log(a1+a2eαx)+a2αk1x)a1a2α+c1(clog(a1+a2eαx)a1αcxa1eγzγ,log(b1+b2eβy)b2βlog(a1+a2eαx)a2α)}}

Maple

restart; 
local gamma; 
pde := exp(beta*y)*(a1+a2*exp(alpha*x))*diff(w(x,y,z),x)+  exp(alpha*x)*(b1+b2*exp(beta*y))*diff(w(x,y,z),y)+c*exp(beta*y+gamma*z)*diff(w(x,y,z),z)= k3*exp(beta*y)*(k1+k2*exp(alpha*x)); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=1αa2a1(k3(a1k2a2k1)ln(a1+a2eαx)+a2α(k3xk1+_F1(1αa2βb2(yαa2βln(a1+a2eαx)βb2+αa2RootOf(yαa2βln(a1+a2eαx)βb2αa2ln(b1b2+e_Z(a1+a2eαx)βb2αa2))),ln(a1+a2eαx)γcα(cγx+eγza1)a1αcγ)a1))

____________________________________________________________________________________