6.2.21 7.2

6.2.21.1 [715] problem number 1
6.2.21.2 [716] problem number 2
6.2.21.3 [717] problem number 3
6.2.21.4 [718] problem number 4
6.2.21.5 [719] problem number 5
6.2.21.6 [720] problem number 6
6.2.21.7 [721] problem number 7
6.2.21.8 [722] problem number 8
6.2.21.9 [723] problem number 9
6.2.21.10 [724] problem number 10
6.2.21.11 [725] problem number 11
6.2.21.12 [726] problem number 12

6.2.21.1 [715] problem number 1

problem number 715

Added January 29, 2019.

Problem 2.7.2.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) wx+(aarccosk(λx)+b)wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (a*ArcCos[lambda*x]^k + b)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c1(acos1(λx)k(icos1(λx))kGamma(k+1,icos1(λx))+a(icos1(λx))kcos1(λx)kGamma(k+1,icos1(λx))+2bλx2λy2λ)}}

Maple

restart; 
pde :=  diff(w(x,y),x)+( a*arccos(lambda*x)^k + b   )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1(bx+y+a2kπλ((arccos(λx))k+12kπ(k+2)λ2x2+12kπ(k+2)arccos(λx)LommelS1(k+32,32,arccos(λx))λ2x2+1321k(2/3k+4/3)(λxarccos(λx)λ2x2+1)LommelS1(k+1/2,1/2,arccos(λx))π(k+2)arccos(λx)))

____________________________________________________________________________________

6.2.21.2 [716] problem number 2

problem number 716

Added January 29, 2019.

Problem 2.7.2.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) wx+(aarccosk(λy)+b)wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (a*ArcCos[lambda*y]^k + b)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c1(1y1acos1(λK[1])k+bdK[1]x)}}

Maple

restart; 
pde :=  diff(w(x,y),x)+( a*arccos(lambda*y)^k + b   )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1((a(arccos(yλ))k+b)1dy+x)

____________________________________________________________________________________

6.2.21.3 [717] problem number 3

problem number 717

Added January 29, 2019.

Problem 2.7.2.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) wx+karccosn(ax+by+c)wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + k*ArcCos[a*x + b*y + c]^n*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)+k*arccos(a*x+b*y+c)^n*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1(ax+byb(k(arccos(_ab+c))nb+a)1d_ab+x)

____________________________________________________________________________________

6.2.21.4 [718] problem number 4

problem number 718

Added January 29, 2019.

Problem 2.7.2.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) wx+aarccosk(λx)arccosn(μy)wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + a*ArcCos[lambda*x]^k*ArcCos[mu*y]^n*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c1((cos1(λx)2)k(a(icos1(λx))kcos1(λx)kGamma(k+1,icos1(λx))a(icos1(λx))kcos1(λx)kGamma(k+1,icos1(λx))+λ(cos1(λx)2)kcos1(μy)n((icos1(μy))nGamma(1n,icos1(μy))+(icos1(μy))nGamma(1n,icos1(μy)))μ)2λ)}}

Maple

restart; 
pde :=  diff(w(x,y),x)+a*arccos(lambda*x)^k*arccos(mu*y)^n*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1(1(k+2)λ(2+n)aμ(aarccos(μy)(2+n)2kμ(221k(k+2)LommelS1(k+1/2,1/2,arccos(λx))arccos(λx)+2k(arccos(λx)LommelS1(k+32,32,arccos(λx))(arccos(λx))k+1))λ2x2+1+2λ(k+2)(((1+n/2)LommelS1(n+1/2,1/2,arccos(μy))+1/2arccos(μy)LommelS1(n+3/2,3/2,arccos(μy))1/2(arccos(μy))n+3/2)μ2y2+1+(a21karccos(λx)arccos(μy)LommelS1(k+1/2,1/2,arccos(λx))x2k1/2arccos(μy)yLommelS1(n+1/2,1/2,arccos(μy)))(2+n)μ))1arccos(μy))

____________________________________________________________________________________

6.2.21.5 [719] problem number 5

problem number 719

Added January 29, 2019.

Problem 2.7.2.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) wx+(y2+λ(arccosx)nya2+aλ(arccosx)n)wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (y^2 + lambda*ArcCos[x]^n*y - a^2 + a*lambda*ArcCos[x]^n)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)+( y^2+lambda*arccos(x)^n*y- a^2 + a*lambda*arccos(x)^n )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1(1a+y((ay)1(2+n)(a+y)((nλarccos(x)(2+n)LommelS1(12+n,12,arccos(x))+λ(2+n)LommelS1(n+12,12,arccos(x))arccos(x)LommelS1(n+32,32,arccos(x))λ+(arccos(x))n+32λ+(arccos(x))32(2+n)(a+y))x2+1x(n(arccos(x))2(2+n)LommelS1(12+n,12,arccos(x))+arccos(x)(2+n)LommelS1(n+12,12,arccos(x))LommelS1(n+32,32,arccos(x))(arccos(x))2+(arccos(x))n+52)λ)e21/2((2+n)LommelS1(n+1/2,1/2,arccos(x))arccos(x)LommelS1(n+3/2,3/2,arccos(x))+(arccos(x))n+3/2)λx2+1+x(1/2LommelS1(n+1/2,1/2,arccos(x))λarccos(x)+aarccos(x))(2+n)(2+n)arccos(x)1x2+1(arccos(x))32dxe21/2((2+n)LommelS1(n+1/2,1/2,arccos(x))arccos(x)LommelS1(n+3/2,3/2,arccos(x))+(arccos(x))n+3/2)λx2+1+x(1/2LommelS1(n+1/2,1/2,arccos(x))λarccos(x)+aarccos(x))(2+n)(2+n)arccos(x)))

____________________________________________________________________________________

6.2.21.6 [720] problem number 6

problem number 720

Added January 29, 2019.

Problem 2.7.2.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) wx+(y2+λx(arccosx)ny+λ(arccosx)n)wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (y^2 + lambda*x*ArcCos[x]^n*y + a*lambda*ArcCos[x]^n)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)+( y^2+lambda*x*arccos(x)^n*y + a*lambda*arccos(x)^n )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

sol=()

____________________________________________________________________________________

6.2.21.7 [721] problem number 7

problem number 721

Added January 29, 2019.

Problem 2.7.2.7 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) wx((k+1)xky2λ(arccosx)n(xk+1y1))wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] - ((k + 1)*x^k*y^2 - lambda*ArcCos[x]^n*(x^(k + 1)*y - 1))*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)-( (k+1)*x^k*y^2 -lambda*arccos(x)^n*(x^(k+1)*y-1) )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1(1xk+1y1(exk+1(arccos(x))nλx2k2xdxxk+1+eλxk+1(arccos(x))ndxxkx2dx(xk+1y1)(k+1)))

____________________________________________________________________________________

6.2.21.8 [722] problem number 8

problem number 722

Added January 29, 2019.

Problem 2.7.2.8 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) wx+(λ(arccosx)ny2+ay+abb2λ(arccosx)n)wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (lambda*ArcCos[x]^n*y^2 + a*y + a*b - b^2*lambda*ArcCos[x]^n)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)+( lambda*arccos(x)^n*y^2+ a*y+ a*b - b^2*lambda*arccos(x)^n )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1(1b+y((by)λ(2+n)(b+y)e12+n(2((2+n)LommelS1(n+1/2,1/2,arccos(x))arccos(x)LommelS1(n+3/2,3/2,arccos(x))+(arccos(x))n+3/2)λbx2+1+x(2+n)(2bλarccos(x)LommelS1(n+1/2,1/2,arccos(x))+aarccos(x)))1arccos(x)((2bnarccos(x)(2+n)LommelS1(1/2+n,1/2,arccos(x))2b(2+n)LommelS1(n+1/2,1/2,arccos(x))+2barccos(x)LommelS1(n+3/2,3/2,arccos(x))+(arccos(x))n+32((b+y)n+2y))x2+1+2bx(n(arccos(x))2(2+n)LommelS1(1/2+n,1/2,arccos(x))+arccos(x)(2+n)LommelS1(n+1/2,1/2,arccos(x))LommelS1(n+3/2,3/2,arccos(x))(arccos(x))2+(arccos(x))n+5/2))(arccos(x))321x2+1dxe12+n(2((2+n)LommelS1(n+1/2,1/2,arccos(x))arccos(x)LommelS1(n+3/2,3/2,arccos(x))+(arccos(x))n+3/2)λbx2+1+x(2+n)(2bλarccos(x)LommelS1(n+1/2,1/2,arccos(x))+aarccos(x)))1arccos(x)))

____________________________________________________________________________________

6.2.21.9 [723] problem number 9

problem number 723

Added January 29, 2019.

Problem 2.7.2.9 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) wx+(λ(arccosx)ny2bλxm(arccosx)ny+bmxm1)wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (lambda*ArcCos[x]^n*y^2 - b*lambda*x^m*ArcCos[x]^n*y + b*m*x^(m - 1))*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)+( lambda*arccos(x)^n*y^2- b*lambda*x^m*arccos(x)^n*y + b*m*x^(m-1) )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

sol=()

____________________________________________________________________________________

6.2.21.10 [724] problem number 10

problem number 724

Added January 29, 2019.

Problem 2.7.2.10 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) wx+(λ(arccosx)ny2+bmxm1λb2x2m(arccosx)n)wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (lambda*ArcCos[x]^n*y^2 + b*m*x^(m - 1) - lambda*b^2*x^(2*m)*ArcCos[x]^n)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)+( lambda*arccos(x)^n*y^2+ b*m*x^(m-1) - lambda*b^2*x^(2*m)*arccos(x)^n )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

sol=()

____________________________________________________________________________________

6.2.21.11 [725] problem number 11

problem number 725

Added January 29, 2019.

Problem 2.7.2.11 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) wx+(λ(arccosx)n(yaxmb)2+amxm1)wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (lambda*ArcCos[x]^n*(y - a*x^m - b)^2 + a*m*x^(m - 1))*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c1(12(λ(icos1(x))ncos1(x)n(cos1(x)2)nGamma(n+1,icos1(x))+λ(icos1(x))ncos1(x)n(cos1(x)2)nGamma(n+1,icos1(x))2axm+by))}}

Maple

restart; 
pde :=  diff(w(x,y),x)+( lambda*arccos(x)^n*(y- a*x^m-b)^2 + a*m*x^(m-1) )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1(1(2+n)(axm+by)(λ((2+n)LommelS1(n+12,12,arccos(x))+(arccos(x))n(arccos(x))32arccos(x)LommelS1(n+32,32,arccos(x)))(axm+by)x2+1(2+n)(xλarccos(x)(axm+by)LommelS1(n+12,12,arccos(x))arccos(x)))1arccos(x))

____________________________________________________________________________________

6.2.21.12 [726] problem number 12

problem number 726

Added January 29, 2019.

Problem 2.7.2.12 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y) xwx+(λ(arccosx)ny2+ky+λb2x2k(arccosx)n)wy=0

Mathematica

ClearAll["Global`*"]; 
pde =  x*D[w[x, y], x] + (lambda*ArcCos[x]^n*y^2 + k*y + lambda*b^2*x^(2*k)*ArcCos[x]^n)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

{{w(x,y)c1(tan1(yxkb2)b21xλcos1(K[1])nK[1]k1dK[1])}}

Maple

restart; 
pde :=  x*diff(w(x,y),x)+( lambda*arccos(x)^n*y^2+ k*y + lambda*b^2*x^(2*k)*arccos(x)^n )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

w(x,y)=_F1(λbxk1(arccos(x))ndxarctan(xkyb))

____________________________________________________________________________________