Added January 2, 2019.
Problem 1.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x = f(x,y) \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] == f[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to \int _1^xf(K[1],y)dK[1]+c_1(y)\right \}\right \}\]
Maple ✓
restart; pde := diff(w(x,y),x)=f(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) =\int \!f \left ( x,y \right ) \,{\rm d}x+{\it \_F1} \left ( y \right ) \]
____________________________________________________________________________________