6.8.20 7.2

6.8.20.1 [1875] Problem 1
6.8.20.2 [1876] Problem 2
6.8.20.3 [1877] Problem 3
6.8.20.4 [1878] Problem 4
6.8.20.5 [1879] Problem 5
6.8.20.6 [1880] Problem 6

6.8.20.1 [1875] Problem 1

problem number 1875

Added Nov 30, 2019.

Problem Chapter 8.7.2.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) wx+awy+bwz=carccosn(βx)w

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x,y,z],x]+a*D[w[x,y,z],y]+b*D[w[x,y,z],z]==c*ArcCos[beta*x]^n * w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)c1(yax,zbx)exp(ccos1(βx)n(cos1(βx)2)n((icos1(βx))nGamma(n+1,icos1(βx))+(icos1(βx))nGamma(n+1,icos1(βx)))2β)}}

Maple

restart; 
local gamma; 
pde :=  diff(w(x,y,z),x)+ a*diff(w(x,y,z),y)+ b*diff(w(x,y,z),z)= c*arccos(beta*x)^n*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(ax+y,bx+z)ecarccos(βx)ndx

____________________________________________________________________________________

6.8.20.2 [1876] Problem 2

problem number 1876

Added Nov 30, 2019.

Problem Chapter 8.7.2.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) a1wx+a2wy+a3wz=(b1arccos(λ1x)+b2arccos(λ2y)+b3arccos(λ3z))w

Mathematica

ClearAll["Global`*"]; 
pde =  a1*D[w[x,y,z],x]+a2*D[w[x,y,z],y]+a3*D[w[x,y,z],z]== (b1*ArcCos[lambda1*x]+b2*ArcCos[lambda2*y]+b3*ArcCos[lambda3*z] ) * w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)c1(ya2xa1,za3xa1)exp(b11lambda12x2a1lambda1+b1xcos1(lambda1x)a1+b2xsin1(lambda2y)a1+b2xcos1(lambda2y)a1+b3xsin1(lambda3z)a1+b3xcos1(lambda3z)a1b21lambda22y2a2lambda2b2ysin1(lambda2y)a2b31lambda32z2a3lambda3b3zsin1(lambda3z)a3)}}

Maple

restart; 
local gamma; 
pde :=  a__1*diff(w(x,y,z),x)+ a__2*diff(w(x,y,z),y)+ a__3*diff(w(x,y,z),z)= (b__1*arccos(lambda__1*x)+b__2*arccos(lambda__2*y)+b__3*arccos(lambda__3*z))*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(ya1xa2a1,za1a3xa1)ey2λ22+1a1a3b2λ1λ3+(z2λ32+1a1a2b3λ1+(λ12x2+1a2a3b1+(a2a3b1xarccos(xλ1)+(a2b3zarccos(zλ3)+a3b2yarccos(yλ2))a1)λ1)λ3)λ2a1a2a3λ1λ2λ3

____________________________________________________________________________________

6.8.20.3 [1877] Problem 3

problem number 1877

Added Nov 30, 2019.

Problem Chapter 8.7.2.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) awx+bwy+carccosn(λx)arccosk(βz)wz=sarccosm(γx)w

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x,y,z],x]+b*D[w[x,y,z],y]+c*ArcCos[lambda*x]^n*ArcCos[beta*z]^k*D[w[x,y,z],z]==s*ArcCos[gamma*x]^m * w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

Failed

Maple

restart; 
local gamma; 
pde :=  a*diff(w(x,y,z),x)+ b*diff(w(x,y,z),y)+ c*arccos(lambda*x)^n*arccos(beta*z)^k*diff(w(x,y,z),z)= s*arccos(gamma*x)*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(aybxa,π(λ2x2+12nLommelS1(n+32,32,arccos(λx))arccos(λx)π(n+2)+λ2x2+12narccos(λx)n+1π(n+2)3(2n3+43)(λxarccos(λx)λ2x2+1)2n1LommelS1(n+12,12,arccos(λx))π(n+2)arccos(λx))2nλ+(2βkz2k1LommelS1(k+12,12,arccos(βz))arccos(βz)4βz2k1LommelS1(k+12,12,arccos(βz))arccos(βz)2β2z2+1k2k1LommelS1(k+12,12,arccos(βz))β2z2+12kLommelS1(k+32,32,arccos(βz))arccos(βz)+β2z2+12karccos(βz)k+1arccos(βz)+4β2z2+12k1LommelS1(k+12,12,arccos(βz)))a2k(k2)βcarccos(βz))e(γxarccos(γx)γ2x2+1)saγ

____________________________________________________________________________________

6.8.20.4 [1878] Problem 4

problem number 1878

Added Nov 30, 2019.

Problem Chapter 8.7.2.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) awx+bwy+carccosn(λx)arccosm(βy)arccosk(γz)wz=sw

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x,y,z],x]+b*D[w[x,y,z],y]+c*ArcCos[lambda*x]^n*ArcCos[beta*y]^m*ArcCos[gamma*z]^k*D[w[x,y,z],z]==s* w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

Failed

Maple

restart; 
local gamma; 
pde :=  a*diff(w(x,y,z),x)+ b*diff(w(x,y,z),y)+ c*arccos(lambda*x)^n*arccos(beta*y)^m*arccos(gamma*z)^k*diff(w(x,y,z),z)= s*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(aybxa,(k2)cγ(xarccos(_aλ)narccos((ay(_a+x)b)βa)md_a)+((k2)γzLommelS1(k+12,12,arccos(γz))arccos(γz)+(LommelS1(k+32,32,arccos(γz))arccos(γz)+arccos(γz)k+32+(k+2)LommelS1(k+12,12,arccos(γz)))γ2z2+1)a2k2karccos(γz)(k2)cγ)esxa

____________________________________________________________________________________

6.8.20.5 [1879] Problem 5

problem number 1879

Added Nov 30, 2019.

Problem Chapter 8.7.2.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) awx+barccosn(λx)wy+carccosk(βz)wz=sarccosm(γx)w

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x,y,z],x]+b*ArcCos[lambda*x]^n*D[w[x,y,z],y]+c*ArcCos[beta*z]^k*D[w[x,y,z],z]==s* ArcCos[gamma*x]^m*w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

{{w(x,y,z)c1(cxa+cos1(βz)k((icos1(βz))kGamma(1k,icos1(βz))+(icos1(βz))kGamma(1k,icos1(βz)))2β,(cos1(λx)2)n(b(icos1(λx))ncos1(λx)nGamma(n+1,icos1(λx))b(icos1(λx))ncos1(λx)nGamma(n+1,icos1(λx))+2aλy(cos1(λx)2)n)2aλ)exp(1zscos1(γ(a(icos1(βz))kGamma(1k,icos1(βz))cos1(βz)ka(icos1(βz))kGamma(1k,icos1(βz))cos1(βz)k+cos1(βK[1])k(aGamma(1k,icos1(βK[1]))(icos1(βK[1]))k+2βcxcos1(βK[1])k+a(icos1(βK[1]))kGamma(1k,icos1(βK[1]))))2βc)mcos1(βK[1])kcdK[1])}}

Maple

restart; 
local gamma; 
pde :=  a*diff(w(x,y,z),x)+ b*arccos(lambda*x)^n*diff(w(x,y,z),y)+ c*arccos(beta*z)^k*diff(w(x,y,z),z)= s*arccos(gamma*x)^m*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1((LommelS1(n+32,32,arccos(λx))arccos(λx)+arccos(λx)n+32+(n+2)LommelS1(n+12,12,arccos(λx)))λ2x2+1b2n2narccos(λx)(n+2)(bx2n2nLommelS1(n+12,12,arccos(λx))arccos(λx)+ay)λ(n+2)aλ,(k2)βc(yarccos(λRootOf(_ZbλnLommelS1(n+12,12,arccos(_Zλ))arccos(_Zλ)+2_ZbλLommelS1(n+12,12,arccos(_Zλ))arccos(_Zλ)_baλnarccos(_Zλ)+aλnyarccos(_Zλ)aλn(barccos(λx)nadx)arccos(_Zλ)2_baλarccos(_Zλ)+2aλyarccos(_Zλ)2aλ(barccos(λx)nadx)arccos(_Zλ)_Z2λ2+1bnLommelS1(n+12,12,arccos(_Zλ))+_Z2λ2+1bLommelS1(n+32,32,arccos(_Zλ))arccos(_Zλ)_Z2λ2+1barccos(_Zλ)n+322_Z2λ2+1bLommelS1(n+12,12,arccos(_Zλ))))nd_b)+((k2)βzLommelS1(k+12,12,arccos(βz))arccos(βz)+(LommelS1(k+32,32,arccos(βz))arccos(βz)+arccos(βz)k+32+(k+2)LommelS1(k+12,12,arccos(βz)))β2z2+1)b2k2karccos(βz)(k2)βc)eysarccos(γRootOf(_ZbλnLommelS1(n+12,12,arccos(_Zλ))arccos(_Zλ)+2_ZbλLommelS1(n+12,12,arccos(_Zλ))arccos(_Zλ)_aaλnarccos(_Zλ)+aλnyarccos(_Zλ)aλn(barccos(λx)nadx)arccos(_Zλ)2_aaλarccos(_Zλ)+2aλyarccos(_Zλ)2aλ(barccos(λx)nadx)arccos(_Zλ)_Z2λ2+1bnLommelS1(n+12,12,arccos(_Zλ))+_Z2λ2+1bLommelS1(n+32,32,arccos(_Zλ))arccos(_Zλ)_Z2λ2+1barccos(_Zλ)n+322_Z2λ2+1bLommelS1(n+12,12,arccos(_Zλ))))marccos(λRootOf(_ZbλnLommelS1(n+12,12,arccos(_Zλ))arccos(_Zλ)+2_ZbλLommelS1(n+12,12,arccos(_Zλ))arccos(_Zλ)_aaλnarccos(_Zλ)+aλnyarccos(_Zλ)aλn(barccos(λx)nadx)arccos(_Zλ)2_aaλarccos(_Zλ)+2aλyarccos(_Zλ)2aλ(barccos(λx)nadx)arccos(_Zλ)_Z2λ2+1bnLommelS1(n+12,12,arccos(_Zλ))+_Z2λ2+1bLommelS1(n+32,32,arccos(_Zλ))arccos(_Zλ)_Z2λ2+1barccos(_Zλ)n+322_Z2λ2+1bLommelS1(n+12,12,arccos(_Zλ))))nbd_a

____________________________________________________________________________________

6.8.20.6 [1880] Problem 6

problem number 1880

Added Nov 30, 2019.

Problem Chapter 8.7.2.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z) awx+barccosn(λy)wy+carccosk(βz)wz=sw

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x,y,z],x]+b*ArcCos[lambda*y]^n*D[w[x,y,z],y]+c*ArcCos[beta*z]^k*D[w[x,y,z],z]==s* w[x,y,z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
 

Failed

Maple

restart; 
local gamma; 
pde :=  a*diff(w(x,y,z),x)+ b*arccos(lambda*y)^n*diff(w(x,y,z),y)+ c*arccos(beta*z)^k*diff(w(x,y,z),z)= s*w(x,y,z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=_F1(x+π(λ2y2+12nLommelS1(n+32,32,arccos(λy))arccos(λy)π(n2)λ2y2+12narccos(λy)n+1π(n2)+3(2n3+43)(λyarccos(λy)λ2y2+1)2n1LommelS1(n+12,12,arccos(λy))π(n2)arccos(λy))a2nbλ,π(λ2y2+12nLommelS1(n+32,32,arccos(λy))arccos(λy)π(n2)λ2y2+12narccos(λy)n+1π(n2)+3(2n3+43)(λyarccos(λy)λ2y2+1)2n1LommelS1(n+12,12,arccos(λy))π(n2)arccos(λy))2nλ+(2βkz2k1LommelS1(k+12,12,arccos(βz))arccos(βz)4βz2k1LommelS1(k+12,12,arccos(βz))arccos(βz)2β2z2+1k2k1LommelS1(k+12,12,arccos(βz))β2z2+12kLommelS1(k+32,32,arccos(βz))arccos(βz)+β2z2+12karccos(βz)k+1arccos(βz)+4β2z2+12k1LommelS1(k+12,12,arccos(βz)))b2k(k2)βcarccos(βz))esarccos(λy)nbdy

____________________________________________________________________________________