6.7.5 3.1

6.7.5.1 [1615] Problem 1
6.7.5.2 [1616] Problem 2
6.7.5.3 [1617] Problem 3
6.7.5.4 [1618] Problem 4
6.7.5.5 [1619] Problem 5
6.7.5.6 [1620] Problem 6
6.7.5.7 [1621] Problem 7
6.7.5.8 [1622] Problem 8

6.7.5.1 [1615] Problem 1

problem number 1615

Added June 11, 2019.

Problem Chapter 7.3.1.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

wx+aeλxwy+beβxwz=ceγx

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + a*Exp[lambda*x]*D[w[x, y,z], y] +b*Exp[beta*x]*D[w[x,y,z],z]== c*Exp[gamma*x]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)ceγxγ+c1(yaeλxλ,zbeβxβ)}}

Maple

restart; 
local gamma; 
pde := diff(w(x,y,z),x)+ a*exp(lambda*x)*diff(w(x,y,z),y)+b*exp(beta*x)*diff(w(x,y,z),z)=  c*exp(gamma*x); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=ceγx+γ_F1(aeλx+λyλ,beβx+βzβ)γ

____________________________________________________________________________________

6.7.5.2 [1616] Problem 2

problem number 1616

Added June 11, 2019.

Problem Chapter 7.3.1.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

wx+aeλxwy+beβywz=ceγy+seμz

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + a*Exp[lambda*x]*D[w[x, y,z], y] +b*Exp[beta*y]*D[w[x,y,z],z]== c*Exp[gamma*y]+s*Exp[mu*z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)1x(eγ(a(eλx+eλK[1])λ+y)c+exp(μ(λzbeβ(yaeλxλ)Ei(aβeλxλ)+beβ(yaeλxλ)Ei(aβeλK[1]λ))λ)s)dK[1]+c1(yaeλxλ,zbEi(aβeλxλ)eβ(yaeλxλ)λ)}}

Maple

restart; 
local gamma; 
pde := diff(w(x,y,z),x)+ a*exp(lambda*x)*diff(w(x,y,z),y)+b*exp(beta*y)*diff(w(x,y,z),z)=  c*exp(gamma*y)+s*exp(mu*z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=x(ce(ae_aλ+aeλxλy)γλ+se((expIntegral(1,aβe_aλλ)+expIntegral(1,aβeλxλ))be(aeλx+λy)βλ+λz)μλ)d_a+_F1(aeλx+λyλ,bexpIntegral(1,aβeλxλ)e(aeλx+λy)βλ+λzλ)

____________________________________________________________________________________

6.7.5.3 [1617] Problem 3

problem number 1617

Added June 11, 2019.

Problem Chapter 7.3.1.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

wx+aeλywy+beβywz=ceγx+seμz

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + a*Exp[lambda*y]*D[w[x, y,z], y] +b*Exp[beta*y]*D[w[x,y,z],z]== c*Exp[gamma*x]+s*Exp[mu*z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)1x(eγK[1]c+exp(μ(bλ(xK[1])(aλ(xK[1])+eλy)βλ+(βλ)z+beλy((aλ(xK[1])+eλy)βλ(eλy)βλ)a)λβ)s)dK[1]+c1(aλx+eλyλ,b(eλy)1βλa(λβ)+z)}}

Maple

restart; 
local gamma; 
pde := diff(w(x,y,z),x)+ a*exp(lambda*y)*diff(w(x,y,z),y)+b*exp(beta*y)*diff(w(x,y,z),z)=  c*exp(gamma*x)+s*exp(mu*z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=x(ce_aγ+se(b(eλy)βλeλy+(βλ)az+((_a+x)aλ+eλy)b(1(_a+x)aλ+eλy)βλ)μ(βλ)a)d_a+_F1(aλxeλyaλ,b(eλy)βλeλy+(βλ)az(βλ)a)

____________________________________________________________________________________

6.7.5.4 [1618] Problem 4

problem number 1618

Added June 11, 2019.

Problem Chapter 7.3.1.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

wx+(A1eα1x+B1eν1x+λy)wy+(A2eα2x+B2eν2x+βy)wz=keγz

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + (A1*Exp[alpha1*x] +B1*Exp[nu1*x+lambda*y] )*D[w[x, y,z], y] +(A2*Exp[alpha2*x] +B2*Exp[nu2*x+beta*y] )*D[w[x,y,z],z]== k*Exp[gamma*z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

Failed

Maple

restart; 
local gamma; 
pde := diff(w(x,y,z),x)+ (A1*exp(alpha1*x) +B1*exp(nu1*x+lambda*y) )*diff(w(x,y,z),y)+(A2*exp(alpha2*x) +B2*exp(nu2*x+beta*y) )*diff(w(x,y,z),z)= k*exp(gamma*z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=xke(z+(B2(B1λ(eA1λe_fα1+_fα1ν1α1d_f)+B1λ(eA1λeα1xα1+ν1xdx)+e(A1eα1xα1y)λα1)βλeA1βe_fα1+_fα1ν2α1+A2e_fα2)d_f(x(B2(B1λ(eA1λe_bα1+_bα1ν1α1d_b)+B1λ(eA1λeα1xα1+ν1xdx)+e(A1eα1xα1y)λα1)βλeA1βe_bα1+_bα1ν2α1+A2e_bα2)d_b))γd_f+_F1(B1λ(eA1λeα1xα1+ν1xdx)e(A1eα1xα1y)λα1λ,z(x(B2(B1λ(eA1λe_bα1+_bα1ν1α1d_b)+B1λ(eA1λeα1xα1+ν1xdx)+e(A1eα1xα1y)λα1)βλeA1βe_bα1+_bα1ν2α1+A2e_bα2)d_b))

____________________________________________________________________________________

6.7.5.5 [1619] Problem 5

problem number 1619

Added June 11, 2019.

Problem Chapter 7.3.1.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

aeαxwx+beβywy+ceγzwz=keλx

Mathematica

ClearAll["Global`*"]; 
pde =  a*Exp[alpha*x]*D[w[x, y,z], x] + b*Exp[beta*y]*D[w[x, y,z], y] +c*Exp[gamma*z]*D[w[x,y,z],z]== k*Exp[lambda*x]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)kex(λα)a(αλ)+c1(beαxaαeβyβ,ceαxaαeγzγ)}}

Maple

restart; 
local gamma; 
pde := a*exp(alpha*x)*diff(w(x,y,z),x)+  b*exp(beta*y)*diff(w(x,y,z),y)+c*exp(gamma*z)*diff(w(x,y,z),z)= k*exp(lambda*x); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=(α+λ)a_F1((aαeαxbβeβy)eαxβyαbβ,(aαeαxcγeγz)eαxγzαcγ)+ke(αλ)x(α+λ)a

____________________________________________________________________________________

6.7.5.6 [1620] Problem 6

problem number 1620

Added June 11, 2019.

Problem Chapter 7.3.1.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

aeβywx+beαxwy+ceγzwz=keλx

Mathematica

ClearAll["Global`*"]; 
pde =  a*Exp[beta*x]*D[w[x, y,z], x] + b*Exp[alpha*x]*D[w[x, y,z], y] +c*Exp[gamma*z]*D[w[x,y,z],z]== k*Exp[lambda*x]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)kex(λβ)a(βλ)+c1(ceβxaβeγzγ,ybeαxβxaαaβ)}}

Maple

restart; 
local gamma; 
pde := a*exp(beta*y)*diff(w(x,y,z),x)+  b*exp(alpha*x)*diff(w(x,y,z),y)+c*exp(gamma*z)*diff(w(x,y,z),z)= k*exp(lambda*x); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=xαke_aλaαeβy(e_aα+eαx)bβd_a+_F1(aαeβybβeαxαbβ,(αcγxcγln(aαeβybβ)+(aαeβybβeαx)eγz)bβ(aαeβybβeαx)αcγ)

____________________________________________________________________________________

6.7.5.7 [1621] Problem 7

problem number 1621

Added June 11, 2019.

Problem Chapter 7.3.1.7, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

(a1+a2eαx)wx+(b1+b2eβy)wy+(c1+c2eγz)wz=k1+k2eαx

Mathematica

ClearAll["Global`*"]; 
pde =  (a1+a2*Exp[alpha*x])*D[w[x, y,z], x] + (b1+b2*Exp[beta*y])*D[w[x, y,z], y] +(c1+c2*Exp[gamma*z])*D[w[x,y,z],z]== k1+k2*Exp[alpha*x]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)(a1k2a2k1)log(a1+a2eαx)+a2αk1xa1a2α+c1(log(eβy(a1+a2eαx)b1βa1αb1+b2eβy)b1βxa1,log(eγz(a1+a2eαx)c1γa1αc1+c2eγz)c1γxa1)}}

Maple

restart; 
local gamma; 
pde := (a1+a2*exp(alpha*x))*diff(w(x,y,z),x)+ (b1+b2*exp(beta*y))*diff(w(x,y,z),y)+(c1+c2*exp(gamma*z))*diff(w(x,y,z),z)= k1+k2*exp(alpha*x); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=a1a2α_F1(a1αRootOf(a1αβya1αln((b1+e_Z)(a2eαx+a1)b1βa1αb2)+b1βln(a2eαx+a1))(b1ln(a2eαx+a1)+(a1y+b1x)α)βa1αb1β,a1αRootOf(a1αγza1αln((c1+e_Z)(a2eαx+a1)c1γa1αc2)+c1γln(a2eαx+a1))(c1ln(a2eαx+a1)+(a1z+c1x)α)γa1αc1γ)+a1k2ln(a2eαx+a1)a2k1ln(a2eαx+a1)+a2k1ln(eαx)a1a2α

____________________________________________________________________________________

6.7.5.8 [1622] Problem 8

problem number 1622

Added June 11, 2019.

Problem Chapter 7.3.1.8, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for w(x,y,z)

eβy(a1+a2eαx)wx+eαx(b1+b2eβy)wy+ceβy+γzwz=k3eβy(k1+k2eαx)

Mathematica

ClearAll["Global`*"]; 
pde = Exp[beta*y]*(a1+a2*Exp[alpha*x])*D[w[x, y,z], x] + Exp[alpha*x]*(b1+b2*Exp[beta*y])*D[w[x, y,z], y] +c*Exp[beta*y+gamma*z]*D[w[x,y,z],z]== k3*Exp[beta*y]*(k1+k2*Exp[alpha*x]); 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

{{w(x,y,z)k3((a1k2a2k1)log(a1+a2eαx)+a2αk1x)a1a2α+c1(clog(a1+a2eαx)a1αcxa1eγzγ,log(b1+b2eβy)b2βlog(a1+a2eαx)a2α)}}

Maple

restart; 
local gamma; 
pde := exp(beta*y)*(a1+a2*exp(alpha*x))*diff(w(x,y,z),x)+  exp(alpha*x)*(b1+b2*exp(beta*y))*diff(w(x,y,z),y)+c*exp(beta*y+gamma*z)*diff(w(x,y,z),z)= k3*exp(beta*y)*(k1+k2*exp(alpha*x)); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

w(x,y,z)=(k1k3x+a1_F1(a2αβy+a2αRootOf(a2αβya2αln(b1(a2eαx+a1)b2βa2αb2+e_Z)b2βln(a2eαx+a1))b2βln(a2eαx+a1)a2αb2β,αcγxa1αeγz+cγln(a2eαx+a1)a1αcγ))a2α+(a1k2a2k1)k3ln(a2eαx+a1)a1a2α

____________________________________________________________________________________